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1. Introduction

The study of string theory compactifications to four dimensions with non-trivial fluxes is

not only interesting by itself, but seems to be necessary if we hope to use string theory to

describe realistic scenarios. Moreover, backgrounds with fluxes arise naturally also in the

context of the gauge-gravity correspondence. D-branes play a central role in several aspects

of these constructions and thus the study of their properties on nontrivial flux backgrounds

is of both formal and phenomenological interest.

In this paper we study the dynamics of space-time filling D-branes in the most general

Type II backgrounds preserving four-dimensional Poincaré invariance and N = 1 super-

symmetry. The aim is that of presenting a unified analysis that automatically includes a
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large class of cases, having N = 1 background supersymmetry as the unique requirement.

This analysis obviously includes as special subcases the N = 2 backgrounds that are ob-

tained by turning off the Ramond-Ramond (RR) fields, and in particular the limit in which

the internal space reduces to a standard Calabi-Yau space.

D-brane dynamics in N = 2 compactifications on standard Calabi-Yau three-folds

constitute an active past and present topic of research (for reviews and complete lists of

references see for example [1, 2]). One approach, that we will follow in the present paper,

is to consider D-branes filling the four flat directions and wrapping some internal cycle,

describing the system by an effective four-dimensional N = 1 theory. The well-known

geometrical properties of the underlying Calabi-Yau spaces allow one to employ a series

of familiar technics. Many problems can be addressed systematically by using the two

integrable structures of the Calabi-Yau, i.e. the complex and symplectic structures, and for

example the associated twisted topological theory constitutes an efficient way to inspect

the holomorphic sector of the theory [3].

In general, the reduction of the background supersymmetry to N = 1, obtained by

giving non-trivial expectation value to the internal fluxes, can drastically change the ge-

ometry of the internal space.1 In particular, the symplectic and complex structures cease

to be defined in general and, even in cases when they are both defined, they may not be

simultaneously integrable. However, as discussed in [5] for a wide class of N = 1 vacua, the

minimal supersymmetry still imposes an integrable structure on the internal manifold that

can be described as a generalized complex structure by using the language of generalized

complex geometry [6, 7]. The complex and symplectic structures are substituted by a pair

of pure spinors (that are particular kinds of polyforms - formal sums of forms of different

degrees) of definite and opposite parity, that are associated to corresponding generalized al-

most complex structures. The background supersymmetry conditions are written in terms

of these two pure spinors and imply that one of the associated generalized almost complex

structures is actually integrable, while the RR background fluxes provide an obstruction

to the integrability of the other.

In this paper we will consider the most general class of N = 1 backgrounds admitting

supersymmetric static D-brane configurations. These backgrounds constitute a subclass

of the vacua analyzed in [5] and we will refer to them as D-calibrated backgrounds. The

name is justified by the fact that, as shown in [8], these supersymmetric backgrounds can

be completely characterized in terms of a new kind of generalized calibrations associated

to the possible supersymmetric static D-brane configurations (i.e. filling two, three or all

four space-time directions).2 The generalized calibrations are essentially given by the real

and imaginary parts of the background pure spinors, and provide an elegant physical in-

terpretation for them.

Introducing a space-time filling D-brane wrapping some internal generalized cycle (de-

fined as cycle with a world-volume field-strength on it) on these D-calibrated backgrounds,

the effective four-dimensional description should admit an N = 1 structure. Indeed, we

1For a review on flux compactifications see for example [4].
2Similar generalized calibrations were introduced in [9] for the subclass of N = 2 backgrounds obtained

by switching off the RR fields.
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will show how it is possible to identify superpotentials and D-terms that can be written

in a completely general form in terms of the underlying generalized calibrations (and then

of the background pure spinors). The associated F-flatness and D-flatness conditions are

equivalent to the supersymmetry/calibration condition found in [8].

Regarding the superpotential, we will see how it only involves the background inte-

grable pure spinor and the associated F-flatness condition requires that the D-brane must

wrap a generalized complex submanifold, as defined in [7]. This result can be seen as an ex-

tension of the “decoupling statement” of [10], that in the present context can be rephrased

as the requirement that the superpotential only ‘sees’ the underlying (integrable) general-

ized complex structure. The superpotentials we find may be adopted for the topological

branes [11 – 15] of the associated topological models [5, 11, 16]. Our superpotentials gener-

alize known superpotentials for D-branes on Calabi-Yau manifolds, as studied for example

in [3, 17 – 19]. They are also in agreement with previous results for D7-branes with world-

volume and/or background fluxes [20, 21]. We will discuss the holomorphic properties of

the superpotentials and shall see how they can be addressed in a unified way, again gener-

alizing previous results for D-branes on Calabi-Yau spaces (see for example the discussion

of [22, 23]).

It is well known that the tension of a possible BPS domain wall in an N = 1 theory is

expressed uniquely in term of the superpotential. This relation has been used for example

in [24, 25] for deriving flux induced superpotentials for the closed string moduli. Using the

underlying generalized calibrations, we will see how the same approach can also be used

to give an alternative and more physical derivation of the D-brane superpotentials, thus

obtaining a non-trivial consistency check of our results.

Regarding the D-flatness condition, in the standard Calabi-Yau case, it can be seen as

a deformed Hermitian-Yang-Mills equation for the holomorphic connection on the holomor-

phic B-cycles, while for Lagrangian A-branes it corresponds to the additional “speciality”

conditions (a discussion and more references can be found in [1]). These conditions are

equivalent to the vanishing of a moment map associated to the U(1) gauge symmetry on the

D-brane through an appropriate symplectic structure on the configuration space [22, 23].

The vanishing of the moment map provides a transversal slicing for the imaginary exten-

sion of the gauge group action, whose complexification is a symmetry of the superpotential.

An extension of this approach to the case of SU(3)-structure backgrounds has been dis-

cussed in [26]. We will propose a symplectic form that generalizes the known symplectic

structures of the above mentioned particular subcases to our more general setting. Using

this, the U(1) gauge symmetry on the wrapped cycle is associated to a moment map whose

vanishing condition is equivalent the our general D-flatness condition.

The insight given by the generalized calibrations characterizing these backgrounds

allows us to derive another interesting physical result. Namely, the D-term turns out to be

strictly related to the BPS cosmic strings obtained by wrapping D-branes filling only two

flat space-time directions around internal generalized cycles. First, we will discuss how the

D-flatness condition can be satisfied only if a certain topological constant ξ vanishes. This

constant can be identified with the Fayet-Iliopoulos term in the effective four-dimensional

description. Then, we will see how the BPS cosmic string tension computed from our D-
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brane setting matches precisely the BPS cosmic string tension Tstring = 2πξ obtained from

N = 1 supergravity in [27], which should describe a DD̄-brane pair. This result provides a

non-trivial check of the identification proposed in [27] between these D-term supergravity

string solitons and the effective cosmic strings obtained by wrapping D-branes.

The plan of the paper is as follows. In section 2 we review the basic results of [8], i.e. the

D-brane supersymmetry conditions and the associated generalized calibrations. In section 3

we show how, starting from the Dirac-Born-Infeld (DBI) plus Chern-Simons (CS) action

for D-branes, we can organize the four-dimensional potential in an explicit N = 1 form,

recognizing the supersymmetry/calibration conditions in the F- and D-flatness conditions of

the four-dimensional description. In section 4 we introduce a superpotential that gives rise

to the F-flatness condition. This can be written in a universal way by using the underlying

integrable pure spinor. In section 5 we give an alternative derivation of the superpotential

by using domain wall D-brane configurations. Cosmic string D-brane configurations are

considered in section 6, stressing their relation with the Fayet-Iliopoulos contribution to

the D-term and giving a general nontrivial argument in favor of their identification with

the supergravity cosmic strings constructed in [27]. The holomorphicity properties of the

superpotentials are studied in section 7, where an almost complex structure is introduced

on the D-brane configuration space from the SU(3) × SU(3) structure of the underlying

background. In section 8 we discuss the reduction of this almost complex structure to

the superpotential critical subspace. In section 9 we turn to the D-flatness condition and

see how it can be interpreted as the vanishing of a moment map associated to the world-

volume gauge symmetry by an appropriately defined symplectic structure. Section 10 is

dedicated to some explicit examples in the more specific case of backgrounds with internal

SU(3)-structure [28]: we will consider D3, D5, D6 and D7-branes, with particular attention

being paid to the last case, for which our general analysis reproduces results present in the

literature (see for example [20, 21, 29 – 32]). Finally, in section 11 we present our concluding

remarks. Appendix A contains a more detailed discussion on our parametrization of the

infinitesimal deformations of generalized cycles.

2. D-calibrated N = 1 vacua

In this paper we consider the most general Type II N = 1 backgrounds with four-

dimensional Poincaré invariance which admit possible supersymmetric D-branes filling one

or more flat space directions and wrapping some internal cycle. As discussed in [8], all the

backgrounds satisfying these conditions consists of a subclass of the family of N = 1 vacua

analyzed in [5], that we refer to as D-calibrated since they can be completely characterized

by the existence a kind of generalized calibrations [8] as we are going to review in this

section.

Let us discuss briefly the main properties of the N = 1 D-calibrated backgrounds,

following the conventions of [8]. The ten dimensional metric can be written in the general

form

ds2 = e2A(y)dxµdxµ + gmn(y)dymdyn , (2.1)
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where xµ, µ = 0, . . . , 3 label the four-dimensional flat space, and ym, m = 1, . . . , 6, the

internal space. The B-form field-strength H = dB can have legs only along internal

directions, while the generalized RR field-strengths

F(n+1) = dC(n) + H ∧ C(n−2) , (2.2)

are allowed to have the restricted form

F(n) = F̂(n) + V ol(4) ∧ F̃(n−4) . (2.3)

All the fields appearing in this ansatz (including the dilaton Φ) can depend only on the

internal coordinates ym. Note also that the usual electric-magnetic Hodge duality relating

lower and higher degree RR field-strength translates into the relation F̃(n) = (−)
(n−1)(n−2)

2 ∗6

F̂(6−n) between their internal components.

Starting from this bosonic ansatz, the N = 1 supersymmetry imposes that there ex-

ist four independent ten dimensional Killing spinors that can be written in terms of an

arbitrary four-dimensional constant spinor ζ+ of positive chirality and two internal six-

dimensional spinors η(1) and η(2). The resulting Killing equations give strong constraints

on the background bosonic ansatz. The important result proved in [5] is that these su-

persymmetry constraints on the background fields can be nicely written in terms of the

following two polyforms of definite parity

Ψ+ =
∑

k≥0

Ψ+
(2k) Ψ− =

∑

k≥0

Ψ−
(2k+1), (2.4)

corresponding via the usual Clifford map to the bispinors3

/Ψ+ = η
(1)
+ ⊗ η

(2)†
+ , /Ψ− = η

(1)
+ ⊗ η

(2)†
− . (2.5)

Ψ± can be seen to be pure spinors in the context of the generalized complex geometry and

define corresponding generalized almost complex structures.4 As we will presently recall,

in the N = 1 vacua we are interested in, only one of these two generalized almost complex

structure will actually be integrable [5].

Note that not all the possible N = 1 solutions with 4d Poincaré invariance can be

studied in these terms. Indeed there are some pure NS N = 1 vacua [34 – 36] that cannot

be incorporated in these class of backgrounds, since in these cases one of the two internal

spinors vanishes and then both Ψ± vanish as well, spoiling of any mean the above approach.

However, as discussed in [8], the only N = 1 backgrounds that can admit supersymmetric

(static) D-branes filling one or more flat space directions are those whose internal spinors

have the same norm

||η(1)||2 = ||η(2)||2 = |a|2 . (2.6)

3See [33] for a previous analysis using these bispinors in pure NS backgrounds.
4More explicit expressions for the pure spinors Ψ± can be found in [5]. The case of D-calibrated SU(3)-

structure vacua, which include the standard N = 2 compactifications on flux-less Calabi-Yau’s as a subcase,

will be discussed in detail in section 10.
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This means that the cases we are interested in can be completely covered by the description

given in [5] and the condition (2.6) allows also to characterize this class of N = 1 back-

grounds as D-calibrated. More explicitly, taking into account the additional requirement

given in (2.6), the supersymmetry conditions for the backgrounds can be split in two parts.

One relates the warp factor A to the norm of the internal spinor

d|a|2 = |a|2dA ⇒ |a|2 = ceA , (2.7)

for some constant c. This relation is a direct consequence of the 4d N = 1 supersymmetry

as it is equivalent to require that ε̄Γµε (here ε is the 10d Killing spinor doublet) must be a

(constant) Killing vector generating the 4d spacetime translations.

The other supersymmetry conditions involve the two pure spinors Ψ± characterizing

our backgrounds5

e−2A+ΦdH

(

e2A−ΦΨ1

)

= dA ∧ Ψ̄1 +
i|a|2

8
eΦF̃ ,

dH

(

e2A−ΦΨ2

)

= 0 , (2.8)

where

dH = d + H∧ (2.9)

is the H-twisted differential (such that d2
H = 0) and for Type IIA we have

Ψ1 = Ψ− , Ψ2 = Ψ+ and F̃ = F̃A = F̃(0) + F̃(2) + F̃(4) + F̃(6) , (2.10)

while for Type IIB

Ψ1 = Ψ+ , Ψ2 = Ψ− and F̃ = F̃B = F̃(1) + F̃(3) + F̃(5) . (2.11)

As proved in [8], the equations given in (2.8) can be completely characterized in terms

of properly defined generalized calibrations associated to possible static supersymmetric

D-branes. These are given by D-branes filling two (strings), three (domain walls) or all

four flat space-time directions, and wrapping some internal generalized cycle (Σ,F), i.e.

a cycle Σ with a possible general world-volume field strength F on it (which satisfies the

Bianchi identity dF = PΣ[H]). The associated generalized calibrations are given by dH -

closed formal sums of (real) forms ω =
∑

k ω(k) of definite degree parity which are written

in terms of the pure spinors Ψ± and are properly energy minimizing when combined with

the world-volume field strength F . More explicitly, for any generalized cycle (Σ,F),

PΣ[ω] ∧ eF |top ≤ E(Σ,F) , (2.12)

where E(Σ,F) refers to the energy density of the D-brane wrapping (Σ,F). Note that,

if on one hand the form of the generalized calibration is completely general for wrapped

5See [8] for the conventions we are using and how they are related to the ones adopted in [5].
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cycles of any dimension, on the other hand it does depend explicitly on the number of flat

space-like directions filled by the D-brane.6 If we introduce the normalized pure spinors

Ψ̂± = − 8i

|a|2 Ψ± , (2.13)

the generalized calibrations for space-time filling D-branes are given by [8]

ω(4d) = e4A
[

e−ΦReΨ̂1 − C̃
]

, (2.14)

where C̃ =
∑

k C̃(k) with k even in Type IIB and odd in Type IIA, and C̃(k) are potentials

for F̃(k+1), such that F̃(k+1) = dHC̃(k) + 4dA ∧ C̃(k). The generalized calibrations for four-

dimensional strings and domain walls are given by

ω(string) = e2A−ΦImΨ̂1 , ω(DW) = e3A−ΦRe(eiθΨ̂2) . (2.15)

The calibration for the domain walls contain an a priori arbitrary phase specifying the

preserved half of the four-dimensional N = 1 supersymmetry. The inequality (2.12) for each

of the generalized calibrations comes from completely algebraic considerations while the

differential requirement that they are dH-closed is completely equivalent to the background

supersymmetry conditions given in (2.8). Note also that the generalized calibrations for

the space-time filling and four-dimensional string D-branes involve the non-integrable pure

spinor, while the generalized calibration for four-dimensional domain wall D-branes involves

the integrable pure spinor.

A supersymmetric D-brane configuration can be completely characterized as a D-brane

wrapping a generalized calibrated cycle, i.e. a generalized cycle (Σ,F) which saturates in

each point the upper bound in (2.12). As discussed in [8], this condition can be split in an

equivalent pair of conditions. In the case of the space-time filling D-branes (on which we

focus from now on), these are given by

P [dym ∧ Ψ2 + gmnınΨ2] ∧ eF |top = 0 , F − flatness ,

P [ImΨ1] ∧ eF |top = 0 , D − flatness . (2.16)

The reason why we have used the names F-flatness and D-flatness will be the focus of the

following discussions. For the moment, let us only recall that the F-flatness imposes that the

D-brane must wrap a generalized complex submanifold [8] and then specifies the generalized

complex geometry of the supersymmetric D-branes. In the SU(3)-structure cases, where the

internal manifold is either complex (IIB) or symplectic (IIA), this requirement is completely

equivalent [7] to require that the D-brane must be holomorphically embedded with F(2,0) =

0 in Type IIB, and must wrap Lagrangian or more general coisotropic [37] generalized cycles

in Type IIA. This is completely analogous to what happens in the flux-less Calabi-Yau case,

where the above geometrical conditions must be supplemented by a stability condition

6This effect comes directly from the N = 1 supersymmetry of the background (that, for example, implies

a nontrivial warp factor). In the N = 2 limit reached by turning off the RR fields, the form of the generalized

calibrations acquires an arbitrary phase [9] and does not depend on the filled flat directions.
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which can be read as a deformed Hermitian-Yang-Mills equation for B branes and the

“speciality” condition for Lagrangian A-branes and their coisotropic generalization [38, 39].

As discussed in a series of paper by Douglas and collaborators (see e.g. [1] for a review),

this stability condition can be seen as a D-flatness condition, obtained by imposing the

vanishing of an associated moment map. In the following sections we will discuss in detail

the above F-flatness and D-flatness in our general setting considering N = 1 backgrounds,

trying to clarify their meaning and their relation with the results already known in the

Calabi-Yau case.

3. The four-dimensional point of view

In this section, using the results of [8] reviewed in section 2, we would like to pass to

a four-dimensional description of the dynamics of the space-time filling D-branes, which

should be ultimately described by a four-dimensional N = 1 effective theory.

Let us start by deriving a form which depends explicitly on the pure spinors Ψ± for

the potential V(Σ,F) associated to a space-time filling D-brane wrapping the generalized

cycle (Σ,F). Consider a D-brane wrapping an n-dimensional cycle Σ and introduce a

complex F-term vector density Wm, a real D-term density D and the scalar density Θ in

the following way

Wmdσ1 ∧ · · · ∧ dσn =
(−)n+1

2
P [e3A−Φ(ım + gmkdyk∧)Ψ̂2] ∧ eF |top ,

Ddσ1 ∧ · · · ∧ dσn = P [e2A−ΦImΨ̂1] ∧ eF |top ,

Θdσ1 ∧ · · · ∧ dσn = P [e4A−ΦReΨ̂1] ∧ eF |top . (3.1)

Note that, if we are not “too far” from a supersymmetric configuration (which has also an

appropriate orientation on Σ), we can assume that Θ > 0. From the discussion presented

in [8], we can argue that

√

det(P [g] + F) = e−4A+Φ
√

Θ2 + e4AD2 + 2e2AgmnWmW̄n . (3.2)

The complete four-dimensional potential for the D-brane is then given by

V(Σ,F) =

∫

Σ
dnσ

√

Θ2 + e4AD2 + 2e2AgmnWmW̄n −
∫

e4AC̃ ∧ eF . (3.3)

This potential contains the full nonlinear (static) interactions governing the D-brane.

We want now to consider the expansion of such a potential around a supersymmetric

vacuum configuration (Σ0,F0), which is characterized by the condition Wm(Σ0,F0) =

D(Σ0,F0) = 0. Then, we can consider very small Wm and D and expand the square root

in the potential (3.3). As a result, at the quadratic order in Wm and D we obtain the

following potential

V(Σ,F) '
∫

Σ
P [ω(4d)] ∧ eF +

1

2

∫

Σ

dnσ

Θ
(e4AD2 + 2e2AgmkWmW̄k)

= V(Σ0,F0) +
1

2

∫

Σ

dnσ

Θ
(e4AD2 + 2e2AgmkWmW̄k) , (3.4)
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where in the last step we have used the dH -closedness of the generalized calibration ω(4d)

defined in (2.14).

In order to better identify this potential with the standard potential of N = 1 gauge

theories, we must introduce metrics on the spaces7 Γ(Σ, R) (that can be identified with

the Lie algebra of the four-dimensional gauge group U(1)∞) and Γ(TM |Σ). Let us consider

first two world-volume functions f, g ∈ Γ(Σ, R). We define

k(f, g) ≡
∫

Σ
fgP [e−ΦReΨ̂1] ∧ eF . (3.5)

This can be easily seen to be the natural metric for the Lie algebra of the gauge group by

expanding the DBI action to write the kinetic term for the four-dimensional field-strength.

Secondly, we introduce the following metric on Γ(TM |Σ)

G(X,Y ) ≡
∫

Σ
gmnXmY nP [e2A−ΦReΨ̂1] ∧ eF , (3.6)

that on the other hand defines the natural metric on the space of four-dimensional scalars

(this will become more evident from the following discussions). The above metrics are

non-degenerate for generalized cycles (Σ,F) not “too far” from the supersymmetric ones,

for which

P [ReΨ̂1] ∧ eF |top =

√

det(P [g] + F)
√

det P [g]
dVolΣ . (3.7)

We can now consider the densities D and Wm as belonging to the dual of Γ(Σ, R) and

Γ(TM |Σ) by using the natural pairing given by the ordinary integration (if for example

f ∈ Γ(Σ, R) and θ is a dual density, 〈θ, f〉 =
∫

Σ fθ ). Thus, we can write the potential (3.4)

in the form

V(Σ,F) ' V(Σ0,F0) +
1

2
k−1(D,D) + G−1(dW, dW̄) , (3.8)

where the Wm’s have been considered as the components of the formal object dW =

Wmdxm. As it will be clear from the following sections, we can really think to dW as a

differential of a proper superpotential W. Thus, in the expansion of V given in (3.8) one

can recognize a contribution V(Σ0,F0), which can be seen as a zero point energy, plus a

term that is formally identical to the standard potential of the N = 1 theories, given by

the sum of the squares of the D- and F-terms.

In order to identify more explicitly Wm and D as the actual F- and D-terms of the

four-dimensional N = 1 description for space-time filling D-branes, we can give a look at

the form of the supersymmetry transformations of the world-volume fermions. This can

be obtained by gauge fixing the κ-symmetry of the D-brane superactions [40, 41]. Here

we will use the conventions of [42], consistently with [8]. In particular, we will use the

covariant κ-fixing explicitly discussed in [42], where the second Majorana-Weyl spinor is

7We indicate with Γ(E) the space of sections of a vector bundle E and with Γ(N, R) the space of real

functions on a manifold N .
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put to zero. Then, the D-brane fermionic degrees of freedom are described by a single ten

dimensional Majorana-Weyl spinor θ and a background Killing spinors ε induces a corre-

sponding supersymmetry transformation for θ. When we specialize to the supersymmetry

transformations of an N = 1 vacuum configuration, i.e. with constant fields preserving

Poincaré symmetry, these are given by

δεθ = ζ+ ⊗
[

(

1 − eΦ−4AΘ
√

det(P [g] + F)
+ i

eΦ−2AD
√

det(P [g] + F)

)

η
(1)
+ +

+
eΦ−3AgmnWn

√

det(P [g] + F)
γ̂mη

(1)
−

]

+ c.c. , (3.9)

where ζ+ is an arbitrary constant four-dimensional spinor of positive chirality generating

the N = 1 supersymmetry (see [8] for more details on the notation). If we now consider

Wm and D very small (around a supersymmetric configuration), the above supersymmetry

transformation becomes at leading order

δεθ ' ie−2AD∗(ζ+ ⊗ η
(1)
+ ) + e−AW∗n(ζ+ ⊗ γ̂mη

(1)
− ) + c.c. , (3.10)

where D∗ ∈ Γ(Σ, R) and W∗ ∈ Γ(TM |Σ) are the duals associated to D and dW by using

the metrics (3.5) and (3.6) respectively. In order to give a four-dimensional interpretation

of the above supersymmetry transformation, let us first have a look at the bosonic field

content living on the D-brane.

By starting from a fixed world-volume field strength configuration F on the internal

cycle Σ, the world-volume gauge field fluctuations split in two parts: aµ(x, σ), with in-

dices along the four flat directions, and aα(x, σ) with indices along the internal directions

wrapped by the cycle. On the other hand, the fluctuations of the brane can be described

by sections φm̂(x, σ) ∈ Γ(T⊥
Σ ) of the orthogonal bundle. Note that all the fields depend

on σ, since we are not doing a real dimensional reduction. So, we can think of them as

containing an infinite set of four-dimensional fields. In particular, aµ(x, σ) gives rise to

an infinite set of four-dimensional N = 1 abelian vector multiplets, once completed with

the corresponding gaugini that we indicate schematically with λ(x, σ). On the other hand

aα(x, σ) and φm̂(x, σ) should combine to form the bosonic content of an infinite number of

chiral multiplets whose fermionic components we indicate with χm.

We can now consider more closely the SU(3)×SU(3) structure associated to the internal

manifold M . Each SU(3) factor gives a different reduction of the SO(6) structure group

of TM , and is an independent symmetry acting separately on η(1) and η(2) (see e.g. the

discussion on [43]). Since we are adding to such a background a space-time filling D-brane

wrapping an n-dimensional internal cycle, the SO(1, 3) symmetry of the four-dimensional

part is unbroken, while the two possible SU(3) reductions of the internal SO(6) structure

group are generally spontaneously broken. Note that the chiral multiplets are the only

ones who transform under the SU(3) structure groups of the internal manifold, while the

gauge multiplets are singlets with respect to it.

Turning to fermions, before fixing the κ-symmetry in the superaction of the D-brane,

the fermionic content is given by a pair of ten dimensional Majorana-Weyl fermions θ(1)
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and θ(2) of opposite/same chirality in Type IIA/IIB, each transforming under one of the

two SU(3)’s structure groups. The covariant κ-fixing used here consists in imposing the

condition θ(2) = 0, keeping only θ ≡ θ(1) as physical degrees of freedom (for which the

supersymmetry transformations take the form (3.9)). Note that this type of κ-fixing select

the SU(3) associated to η
(1)
+ , that we call SU(3)1 from now on, as the natural one to be

used to classify the world-volume fields. Of course, we could have made the alternative

(still covariant) choice θ(1) = 0, but this would have been a little less natural since the

physical fermion θ(2) has different chirality for Type IIA and IIB, leading to a somehow

less mirror-symmetric description. This natural selection of the SU(3)1 structure group

will emerge again in the following discussions.

Now, the sixteen components of the ten dimensional fermion θ splits in the following

way under the full structure group Spin(1, 3) × SU(3)1

16 → (2,1) ⊕ (2, 3̄) + c.c. . (3.11)

The four-dimensional vector fields transform as singlets under the internal SU(3)1 structure

group, while the scalar fields transform in the 3 + 3̄ representation. Then, the fermions in

the (2,1) sector must be clearly included in the vector multiples and identified with the

gaugini λ, while the (2, 3̄) sector is given by the fermionic fields χm of the chiral multiplets.

Since a base for the (2,1) sector is given by ζ+ ⊗ η
(1)
+ , while a base for the (2, 3̄) sector is

given by ζ+ ⊗ γ̂mη
(1)
− , we can extract λ and χm from the following splitting of θ

θ(x, σ) = e−2A(σ)λ(x, σ) ⊗ η
(1)
+ (σ) +

1√
2
e−A(σ)χm(x, σ) ⊗ γ̂mη

(1)
− (σ) + c.c. , (3.12)

where we have indicated explicitly the dependence on the flat and internal world-volume

coordinates xµ and σα. The normalizations in (3.12) have been fixed by requiring that λ

and χm must have canonical kinetic term, using the internal metrics (3.5) and (3.6) for

λ and χm respectively. Indeed, the explicit form of the quadratic fermionic terms on a

general background was found in [44] and using this it is easy to see that the kinetic term

for λ and χm are given by

LF
kin = i

∫

Σ
λ̄γµ∂µλP [e−ΦReΨ̂1] ∧ eF + i

∫

Σ
gmnχ̄mγµ∂µχnP [e2A−ΦReΨ̂1] ∧ eF

= ik(λ̄, γµ∂µλ) + iG(χ̄, γµ∂µχ) . (3.13)

Thus, from (3.10) we obtain the standard supersymmetry transformations (for constant

field configurations)

δζλ = iD∗ζ , δζχ
m =

√
2W∗mζ . (3.14)

Even if we have not computed precisely the dimensional reduction and appropriately orga-

nized all the tower of KK fields in supersymmetric multiplets, we can nevertheless conclude

that from the four-dimensional point of view one can indeed consider D as a D-term and

Wm as an F-term, motivating the names used to label the supersymmetry conditions (2.16).

Let us stress again that the above analysis was done in the ‘linearized’ approximation

where D and Wm are small and we expect the theory to be well described by a standard
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N = 1 theory. Note that for the full DBI theory the vanishing of the D-term D alone is not

enough to insure the vanishing of the gaugini supersymmetry transformations (see (3.9)).

On the other hand, the vanishing of the F-term Wm alone is enough to insure that vanishing

of supersymmetry transformation of the fermions in the chiral multiplets. We will see in the

next section that the F-terms do indeed have a clear non-linear validity, by constructing

the explicit complete superpotential generating them. A nonlinear interpretation of the

D-term will arise in section 9.

4. Superpotential for D-branes on N = 1 vacua

In section 2 we have recalled how supersymmetric D-branes in D-calibrated N = 1 back-

grounds can be seen as calibrated D-branes with respect to properly defined generalized

calibrations. This condition is in turn equivalent (up to an appropriate orientation choice)

to the pair of conditions given in (2.16) that, as discussed in section 3, may be seen as

the F-flatness and D-flatness conditions in the language of the N = 1 four-dimensional

formulation. In this section we show how the F-flatness condition in (2.16) can be further

extracted from a corresponding superpotential. This provides a generalization and, in some

sense, a reformulation in a unified language, of previous superpotentials obtained in the

Calabi-Yau case along the lines of the two-cycle case considered in [17] (see for example [22]

for a general discussion in the Calabi-Yau case). Our superpotential is obviously applicable

also in the limiting case of N = 2 backgrounds with only nontrivial NS fields and their

simplest subcase in which the internal manifold reduces to a standard Calabi-Yau.

Let us start by discussing the space of relevant degrees of freedom. We take as con-

figuration space C the space of all the generalized cycles (Σ,F) quotiented by the group

of internal world-volume diffeomorphisms Diff(Σ). The space C can be properly identified

with the space of the scalar fields in the four-dimensional description of the system. The

world-volume gauge transformations that depends only on the Σ-coordinates (and not on

the ones filling the four flat directions) corresponds to an infinite family of abelian rigid

symmetries of the scalar field space C, that are gauged in the full theory. The tangent

space TC to C should describe the infinitesimal deformations of the embedded submanifolds

and of the world-volume field strength on them.

We first describe the deformations of the field strength F due to the deformations of

the world-volume gauge field, while keeping the embedded submanifold Σ fixed. Since F
must satisfy the generalized Bianchi identity dF = PΣ[H], an infinitesimal variation of

F must be of the form δF = da, where a ∈ Γ(T ∗
Σ) is a globally defined one-form on Σ.

As we have said, the infinitesimal gauge transformations a → a + dλ, with λ ∈ Γ(Σ, R),

can be considered as the rigid transformations in the four-dimensional description of the

system, that are gauged by the coupling to the four-dimensional vector fields. Secondly,

we consider the general class of deformations of the submanifold Σ in M generated by a

section X ∈ Γ(TM |Σ) of the bundle TM restricted to Σ. Note that such a a deformation

induces also a corresponding infinitesimal transformation δF = PΣ[ıXH] on the world-

volume field-strength. A more detailed discussion on the infinitesimal deformations of the

generalized cycle (Σ,F) is contained in appendix A.
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Now, not all these infinitesimal deformations are physically distinguishable since some

could be related by an infinitesimal Σ-diffeomorphism. At the infinitesimal level, a Σ-

diffeomorphism can be identified by a vector field v ∈ Γ(TΣ). Then, by associating v to its

push-forward in Γ(TM |Σ), we obtain that the infinitesimal transformations of the form

X = v , δF = dıvF + P [ıvH] , (4.1)

must be considered as non-physical, and must be quotiented out. Then we must consider

the following “gauge” equivalence between two infinitesimal deformations of the generalized

cycle (Σ,F)

X ' X + v , a ' a + ıvF . (4.2)

Such identifications can be appropriately described in generalized geometry terms, by re-

calling the definition of generalized tangent bundle τ(Σ,F) of a generalized cycle (Σ,F) given

in [7]:

τ(Σ,F) = {v + η ∈ TΣ ⊕ T ∗
M |Σ : PΣ[η] = ıvF} . (4.3)

From (4.3) it is clear that the tangent space TC of C at a “point” (Σ,F) can be identified

with the space of sections of the vector bundle N(Σ,F) ≡ (TM ⊕ T ∗
M )|Σ/τ(Σ,F), that we call

the generalized normal bundle of (Σ,F).

We are now ready to rewrite the F-flatness condition in (2.16) in a form that can be

more immediately recognized as coming from a superpotential. In order to do this, let

us start by splitting the F-flatness condition in two, by projecting it in the orthogonal

and tangent directions using the metric structure of the background. We consider first

an arbitrary vector field X⊥ ∈ T⊥
Σ orthogonal to Σ. If we consider the projection of the

F-flatness condition in (2.16) along X⊥, we obtain

PΣ[ıX⊥
Ψ̂2] ∧ eF |top = 0 . (4.4)

Secondly, we consider an arbitrary section X|| of the tangent bundle TΣ of Σ. Projecting

the F-flatness condition along X|| gives the equation

P [X∗
|| ∧ Ψ̂2 + ıX||

Ψ̂2] ∧ eF |top = 0 , (4.5)

where X∗
|| is the one-form canonically associated to X|| through the world-volume metric

P [g]. It is easy to see that it is possible to write this equation in the following equivalent

way (we use internal world-volume coordinates σα)

(P [g] + F)αβXβ

|| dσα ∧ P [Ψ̂2] ∧ eF = 0 . (4.6)

Thus, since P [g] + F is non-degenerate for non-degenerate brane configurations, we can

rewrite the F-flatness condition in (2.16) as the following pair of conditions

PΣ[Ψ̂2] ∧ eF |top−1 = 0 ,

PΣ[ıXΨ̂2] ∧ eF |top = 0 , (4.7)
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where now X is an arbitrary section of TM |Σ. Note that, by using the first of the F-flatness

conditions (4.7), the second can in fact be though as X was actually a section the canonical

normal bundle NΣ = TM/TΣ, since it is left invariant if we substitute X with X + v for

any v ∈ Γ(TΣ).

We can now present the superpotential generating the F-flatness conditions (4.7), post-

poning to section 7 the discussion of how it can be actually considered as holomorphic. We

want to define a superpotential W as functional of the pair (Σ,F) defining the internal

configuration of the four-dimensional space-time filling D-brane. In order to define such

a functional, we need to introduce a fixed reference generalized cycle (Σ0,F0) which is

smoothly related to (Σ,F). More precisely, we require that (Σ0,F0) is in the same gener-

alized homology class of (Σ,F), that is there must exist a chain B and a field strength F̃
on it (satisfying dF̃ = PB[H]) such that8

∂B = Σ − Σ0 , PΣ[F̃ ] = F and PΣ0 [F̃ ] = F0 . (4.8)

Then the superpotential whose critical points are given by the F-flatness conditions (4.7)

can be defined by

W(Σ,F) −W(Σ0,F0) =
1

2

∫

B
P [e3A−ΦΨ̂2] ∧ eF̃ . (4.9)

The formula (4.9) defines the superpotential W(Σ,F) up to an additive constant, whose

indeterminacy comes from the arbitrary choice of (Σ0,F0) and also by the possible non-

trivial topology of the background.9 We will see in the next section how we can give to B
and F̃ defined in (4.8) a clear physical interpretation.

It is immediate to obtain (4.7) as critical point conditions for the superpotential (4.9).

Indeed, consider any generalized normal vector [(X,a)] ∈ Γ(N(Σ,F)), associated to the

representative (X,a). Then, the infinitesimal variation of W defined by [(X,a)] is given by

δW =
1

2

∫

Σ

{

P [e3A−ΦıXΨ̂2] + a ∧ P [e3A−ΦΨ̂2]
}

∧ eF . (4.10)

Note that clearly the above infinitesimal variation is invariant under the substitution

(X,a) → (X +v, a+ ıvF), for any v ∈ Γ(TΣ), and thus it is well defined for the equivalence

class [(X,a)]. From (4.10) it is clear that the superpotential critical points are defined by

the conditions (4.7). Note also that the two terms (4.10) can be directly identified with

the left hand side of (4.4) and (4.6) by choosing a gauge with X = X⊥ orthogonal to Σ

and making the identification

a = (P [g] + F) · X|| . (4.11)

8In the case in which Σ has zero homology class we can take an empty Σ0 and the conditions (4.8) can

be simplified to the pair of conditions ∂B = Σ and PΣ[F̃ ] = F .
9If for example the homology group HdimΣ+1(M, R) is non-zero, there are possible non-homologous

choices of B (for fixed boundary conditions). The choice of a different class in HdimΣ+1(M, R) gives a shift

of W by a constant.
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This provides an explicit identification of TC |(Σ,F) = Γ(N(Σ,F)) with Γ(TM |Σ), which uses in

an essential way the background metric. In the following we will often use this identification,

which will allow us to introduce an almost complex and a symplectic structure on C.

Note that, as the F-flatness conditions in the form (4.7), the superpotential does not

depend on the full SU(3) × SU(3) structure (which contains also the metric structure)

characterizing the internal manifold of the N = 1 backgrounds we are considering, but it

involves only the integrable pure spinor. This result could be seen as a generalization of the

“decoupling statement” presented in [10], which asserts that the superpotentials governing

D-branes in Calabi-Yau spaces depend only on the background complex structure and not

on the Kähler structure for B-branes, and vice-versa for A-branes. The same superpotential

may be used to describe also topological D-branes [11 – 15] for the underlying topological

model [11, 16, 5], since its form is clearly valid for any generalized Calabi-Yau structure,

as defined by Hitchin in [6]. Namely, for any generalized Calabi-Yau manifold defined

by a dH-closed pure spinor ψ, we can introduce a variational problem to characterize the

generalized complex submanifolds (Σ,F) as the extrema of the functional

F (Σ,F) =
1

2

∫

B
P [ψ] ∧ eF̃ , (4.12)

where B and F̃ are defined as for the specific case of the N = 1 backgrounds considered

before.

The above superpotentials can be written directly in terms of the generalized cycle

(Σ,F) by using the dH -closedness of e3A−ΦΨ̂2 (or analogously of ψ in (4.12)). Indeed, we

can locally write e3A−ΦΨ̂2 = dHχ, where χ is again a polyform, and then

W(Σ,F) =
1

2

∫

Σ
P [χ] ∧ eF + constant . (4.13)

Note that the expression (4.9) for the superpotential is completely analogous to the CS

term of the D-brane action and like that it is meaningful even if the ‘potential’ polyform

χ is not generally globally defined.

To close this section, let us stress that till now we have deliberately ignored the tension

µp = 2π(2π
√

α′)−(p+1)g−1
s of the Dp-brane we are considering (i.e., we have fixed µp =

1). The tension should be of course reintroduced to have the correct dependence on the

fundamental quantities α′ and gs. The canonically normalized superpotential Wcan which

includes the correct dependence on the tension is given by

Wcan = µpW , (4.14)

as follows directly from the form of the potential (3.8), since the canonically normalized

potential and metric are given by Vcan = µpV and Gcan = µpG respectively, where G is

defined in (3.6). As we will see in the following section, the superpotential (4.9) can be

derived from an argument involving domain walls, which also gives an alternative con-

sistency check of the above normalization of the superpotential. In the following we will

re-intruduce the correct dependence on the tension only when needed, continuing to neglect

it in most of the discussions.
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5. Superpotential from domain walls

In the previous section we have shown how to obtain the F-flatness conditions in (2.16) or

equivalently (4.7) as the conditions defining the critical points of the superpotential (4.9).

In this section we use a physical argument that leads directly to the above superpotential,

confirming its validity from a more physical point of view. This can be seen as a gen-

eralization to the D-brane context of the standard Gukov-Vafa-Witten argument used to

derive the superpotential governing supergravity compactifications with fluxes [24, 25]. In

particular we will see how the domain wall generalized calibration given in (2.15), being

naturally related to the integrable generalized complex structure of the background, is also

naturally related to the F-term associated to the space-time filling D-brane. Along the way,

it will allow to check the canonical normalization of the superpotential given in (4.14).

For a given space-time filling D-brane, consider two supersymmetric configurations

(Σ1,F1) and (Σ2,F2) that belong to the same generalized homology class. These can

be seen as N = 1 vacua of the effective N = 1 four-dimensional supersymmetric theory

governing the D-brane dynamics. Then, on general grounds, we expect that a domain

wall interpolating between the two vacua can exist. Such a domain wall configuration can

be constructed in the following way. Take a D-brane filling the half of space-time with

positive third space coordinate, x3 > 0, and wrapping the supersymmetric generalized

cycle (Σ1,F1), and another D-brane (of the same kind) filling the other half of space-time

with x3 < 0 and wrapping the other supersymmetric generalized cycle (Σ2,F2). These

two D-brane configurations with boundary R1,2 × {x3 = 0} can be glued together in a

consistent way by filling the common boundary with another D-brane (again, of the same

kind) wrapping a generalized cycle (B, F̃) defined by a chain B with boundary such that

∂B = Σ1−Σ2 and a world-volume field-strength F̃ such that PΣ1 [F̃ ] = F1 and PΣ2 [F̃ ] = F2.

The choice of the field-strength F̃ is the right one to glue together the three D-brane

configurations with boundaries in such a way that the usual anomaly terms coming from

the boundaries of each D-brane [45 – 47] cancel each other. In order to see it, let us write

the complete set of Ramond-Ramond potentials in the form C =
∑

k C(k), where k is odd in

Type IIA and even in Type IIB, and consider the general gauge transformation δC = dHλ,

where λ =
∑

k λ(k−1). The CS term in the action of the two half space-time filling D-branes

transforms in the following way

δSCS
1 + δSCS

2 = δ

∫

R1,2×R+×Σ1

P [C] ∧ eF1 + δ

∫

R1,2×R−×Σ2

P [C] ∧ eF2

= −
∫

R1,2×Σ1

P [λ] ∧ eF1 +

∫

R1,2×Σ2

P [λ] ∧ eF2 . (5.1)

Then the gauge symmetry is broken by the boundary terms if we consider the two half

space-time filling D-branes alone. However, the introduction of the domain wall D-brane

located at x3 = 0 as described above provides the necessary counterterm to reabsorb the

undesired terms in (5.1). Indeed, the domain wall D-brane action contains the CS term

SCS
DW =

∫

R1,2×B
P [C] ∧ eF̃ , (5.2)
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and it is easy to see that its variation under the gauge transformation dHλ exactly cancels

the two terms in (5.1).

Now, from general arguments in N = 1 supersymmetric field theories (see e.g. [48]), it

is known that the tension of a BPS domain wall is simply given by

TDW = 2Re(eiθ∆W) , (5.3)

where ∆W = W1 − W2 is the superpotential difference of the two different vacua and

θ define a constant phase related to the preserved half of supersymmetry. On the other

hand, from our D-brane construction the field theory domain wall tension should be exactly

given by the effective tension of a supersymmetric configuration for the D-brane domain

wall introduced above. But, from the general discussion of [8] reviewed in section 2, we

know that such a supersymmetric domain wall D-brane must wrap a generalized cycle

calibrated with respect to the generalized calibration ω(DW) written in (2.15). From this,

we immediately obtain that the tension of the BPS D-brane domain wall is given by

TDW =

∫

B
P [e3A−ΦRe(eiθΨ̂2)] ∧ eF̃ , (5.4)

where again θ defines the preserved supersymmetry. Comparing this expression with the

one given in (5.3), one can immediately extract the the form of the superpotential as

written in (4.9) (again defined up to an additive constant). Furthermore, by reintroducing

the neglected tension µp in front of the right hand side of (5.4), we obtain the canonically

normalized superpotential (4.14). Note that, from the general analysis of [8], the fact

that the domain wall D-brane is calibrated with respect to the generalized calibration

ω(DW) of (2.15) implies also that PB[e3A−ΦIm(eiθΨ̂2)] ∧ eF̃ |top = 0. Thus, as in field

theory, the phase θ in (5.4) is directly related to the phase of superpotential difference, i.e.

e−iθ = ∆W/|∆W|, so that

TDW = 2|∆W| =

∣

∣

∣

∣

∫

B
P [e3A−ΦΨ̂2] ∧ eF̃

∣

∣

∣

∣

. (5.5)

6. Fayet-Iliopoulos terms and cosmic strings

In the previous section we have seen how the well known relation between the superpotential

of an N = 1 theory and supersymmetric domain walls can be exactly reproduced in our

D-brane context by using the calibration ω(DW) defined in (2.15) for D-branes filling only

three flat space-time directions.

It this section we will discuss how, on the other hand, our D-terms are related to the

another possible solitonic objects allowed by an N = 1 theory, namely cosmic strings.10

There has been a lot of recent activity focused on the embedding of these kind of solitons

into string theory (for a review see for example [49]). In particular, in [27] it has been

10Using this name, we implicitly refer to cosmological scenarios obtained from flux compactifications. In

the context of the gauge/gravity correspondence, these effective string configurations can be also seen as

proper solitonic objects of rigid supersymmetric theories.
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stressed how the only allowed supersymmetric cosmic string solutions of four-dimensional

N = 1 supergravity must have a vanishing F-term and can exist thanks to D-terms with

a non-vanishing constant Fayet-Iliopoulos (FI) term. Furthermore the authors of [27] pro-

posed an identification of the N = 1 four-dimensional supergravity they started from with

the effective supergravity theory describing some main features of a DD̄-brane pair filling

the four flat space-time dimensions and wrapping some internal cycle (see also the related

discussions in [50, 51]) . Our formalism allows to give a non-trivial explicit argument in

favor of this proposal and a direct D-brane derivation of some of the results of [27] (see

also [53, 52]).

Let us start by considering a single space-time filling Dp-brane wrapping an internal

n-dimensional generalized cycle (Σ,F). The crucial observation is that the D-flatness

condition D(Σ,F) = 0 [the D-term D is defined in (3.1)] can be satisfied only if
∫

Σ Ddnσ =

0. By recognizing in D the presence of the string generalized calibration ω(string) written

in (2.15), which is dH -closed, we immediately see that this condition is topological, i.e.

does not change if we continuously deform (Σ,F). Then, from the analysis of section 3, it

is natural to identify the constant (reintroducing the tension of the D-brane)

ξ ≡ µp

∫

Σ
Ddnσ (6.1)

with the FI term of the lowest Kaluza-Klein four-dimensional U(1) gauge field. Indeed, the

corresponding gauge group has no associated charged chiral fields and thus the necessary

requirement for having a supersymmetric vacuum is that ξ = 0. Note that even if D
was identified as a D-term expanding the action around a supersymmetric configuration,

the fact that ξ defined in (6.1) is constant for any configuration supports the idea that

its identification with an effective FI term should indeed be more general. This will be

confirmed by the following analysis.

Take a space-time filling Dp-brane wrapping a generalized cycle (Σ,F) such that ξ 6= 0.

As we have said, this cannot admit a supersymmetric configuration (at least considering

only classical deformations). However, we can add an anti D̄p-brane wrapping the same

internal generalized cycle (Σ,F). As a consequence, the resulting spectrum on the branes

includes now also a complex tachyon which is charged under the combination A(1) − A(2)

of the two gauge fields A(1) and A(2) living on the two branes. Thus, from the discussion

of the previous paragraph, it seems reasonable to conclude that the lowest Kaluza-Klein

mode of the diagonal U(1) gauge group under which the tachyon is charged has ξ as non-

vanishing FI term. The (unstable) system then admits a vortex solution [54] that can be

identified with a D(p−2)-brane filling only two flat space-time directions and wrapping the

internal (Σ,F)-cycle, thus leaving an effective cosmic string. From the analysis of [8], we

can immediately conclude that the resulting cosmic string is supersymmetric if and only if

it is calibrated with respect to the generalized calibration ω(string). This implies that the

cosmic sting tension is given by

Tstring = µp−2

∫

Σ
ω(string) ∧ eF = (2π)2α′ξ . (6.2)
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On the other hand, since we are considering N = 1 backgrounds, the DD̄-brane system

should be described by a four-dimensional N = 1 low energy effective theory. Moreover,

since we consider BPS cosmic strings, their tension computed in (6.2) using a probe D(p−2)-

brane should be reproduced by the four-dimensional results of [27]. Indeed, to recognize

the perfect agreement it is enough to remember that in the description given in section 3

we have used fluctuating fields with the dimension of a length. The standard dimensions

for the fields are obtained by simply rescaling them by 2πα′. This induces a corresponding

rescaling ξ → ξ/2πα′ of the FI term. Thus, in terms of the proper dimensional FI term,

the cosmic string tension reads Tstring = 2πξ, which is exactly reproduced by the effective

supergravity calculation of [27].

Our argument also allows one to obtain from a purely D-brane setting the observation

of [27] that for BPS cosmic strings of an N = 1 four-dimensional supergravity the F-term

must vanish identically. Indeed, from the discussion of [8] it follows that the calibration

condition on the generalized cycle (Σ,F) wrapped by the D-brane forming a BPS cosmic

string implies also that (Σ,F) must be a generalized complex submanifold, i.e. the F-term

must vanish identically so that the superpotential (4.9) is extremized everywhere.

Let us stress another outcome of our approach. The system constituted by a DD̄-brane

pair added to an N = 1 background should be described by an effective N = 1 supergravity

theory like the one considered in [27]. As is clear from the above analysis, we can obtain

an effective cosmic string as a tachyonic vortex on a DD̄-brane pair only if these space-time

filling branes wrap an internal generalized cycle (Σ,F) that cannot be deformed in such

a way that the two D-branes, taken singularly, become supersymmetric. In few words,

we must start from a pair of non-supersymmetric space-time filling D-branes if we want

to create a cosmic string from tachyon condensation. Vice-versa, if we start from super-

symmetric Dp-branes, then tachyon condensation cannot give rise to any supersymmetric

D(p − 2)-brane configuration wrapping a generalized cycle homologous to (Σ,F). This is

an immediate consequence of the fact that in general parallel Dp- and D(p − 2)-branes do

not separately preserve any common supersymmetry (but generally form a proper bound

state). In our case, the N = 1 supersymmetry of the background implies that a general-

ized n-cycle cannot be contemporary homologous to generalized calibrated cycles for both

D(3 + n)- and D(1 + n)-branes.

This last conclusion cannot be extended to the particular subcases where the RR fields

are switched off and the background preserves N = 2 supersymmetry. Indeed, in these

cases we have an arbitrary phase entering the generalized calibrations (that can be adjusted

giving a different preserved internal supersymmetry) and the condition for a generalized

cycle to be calibrated does not depend on the number of filled flat directions [38, 9].

However, a supersymmetric D(1+n)-brane wrapping a generalized n-cycle preserves exactly

the N = 1 supersymmetry that is broken by a D(3+n)-brane wrapping the same generalized

n-cycle. The associated non-linearly realized supersymmetry on the world-volume of the

D(3 + n)-branes constituting the DD̄-brane pair should then be associated to a FI term ξ

in a four-dimensional N = 1 description of the system, as happens for N = 1 backgrounds.

Then, the above analysis for N = 1 backgrounds can be repeated with no changes giving

again Tstring = 2πξ. It would be interesting to understand better the relation between
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the D-brane picture and a complete N = 2 four-dimensional supergravity description of

one-half BPS cosmic strings, like for example the one presented in [55].

7. Holomorphicity of the superpotential

We can now pass to the discussion of the holomorphic structure of the superpotential

introduced in section 4. More precisely, we will introduce an almost complex structure on

the space C of the generalized cycles (Σ,F) with respect to which the superpotential is

holomorphic, i.e. it is annihilated by the (0, 1) vectors on C. Since the space of possible

deformations is infinite dimensional, we will work quite at the formal level treating it as

finite dimensional, neglecting possible related subtleties. Furthermore, we shall not worry

about the integrability of the almost complex structures introduced. Such an issue is

already present for example in the study of Lagrangian submanifolds [22], but is not so

crucial for the following discussion.

Let us start by recalling that the internal manifold M has an integrable generalized

complex structure J2 associated to the integrable pure spinor Ψ2. It is clearly not sufficient

by itself to induce an almost complex structure (integrable or not) on C. However, it

does define a natural almost complex structure, in the sense of an endomorphism of the

tangent bundle that squares to minus one, if we restrict TC to the subspace Chol ⊂ C of the

generalized complex submanifolds. As we have seen in section 3, Chol can be characterized as

the space of critical points of the superpotential (4.9). Indeed, by definition a generalized

cycle (Σ,F) is complex if the associated tangent bundle τ(Σ,F) is stable under J2. As

a consequence, J2 defines a natural almost complex structure on the generalized normal

bundle N(Σ,F) and then on the subset Chol of C using the identification TC |(Σ,F) = Γ(N(Σ,F)).

Now, we would like to introduce an appropriate (almost) complex structure J on TC that

should provide an extension to the whole C of the complex structure properly defined only

on Chol. Furthermore, the metric introduced in (3.6) will turn out to define an associated

Hermitian metric on C. In order to do it we must first of all use the generalized metric

structure [7] on TM ⊕ T ∗
M , that in our case is ultimately given by the metric g of M , to

find a good coordinatization of N(Σ,F). Using the metric g we can split TM |Σ in the sum

of the tangent and orthogonal bundles to Σ, TM |Σ = TΣ ⊕ T⊥
Σ . Then, we can give a global

of splitting of TM ⊕ T ∗
M |Σ appearing in the short exact sequence

0 → τ(Σ,F) → TM ⊕ T ∗
M |Σ → N(Σ,F) → 0 , (7.1)

by using the Σ-diffeomorphism invariance to select X = X⊥ ∈ T⊥
Σ in the equivalence

class [(X,a)] ∈ N(Σ,F). This allows to identify N(Σ,F) with T⊥
Σ ⊕ T ∗

Σ and then a general

tangent vector of TC |(Σ,F) can be identified by a pair (X⊥, a) ∈ Γ(T⊥
Σ ⊕ T ∗

Σ). We can also

see this vector as a vector field X = X|| + X⊥ ∈ Γ(TM |Σ), using the identification a =

(P [g] +F) ·X|| already introduced in (4.11) to relate the variation of the superpotential to

the form of the F-flatness written in (2.16). At this point we must recall that for our N = 1

backgrounds one can use the internal spinors η
(1)
+ and η

(2)
+ to construct a pair of almost

complex structures (J1)m
n = −(i/|a|2)η(1)†

+ γ̂m
nη

(1)
+ and (J2)m

n = −(i/|a|2)η(2)†
+ γ̂m

nη
(2)
+ on

M (see [28, 5], and [8] for the conventions used here). Moreover the internal metric gmn is
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Hermitian with respect to both of them. These almost complex structures define also the

null spaces of the two pure spinors Ψ± since

(1 + iJ1)m
n(ın + gnkdyk∧)Ψ± = 0 , (1 ∓ iJ2)m

n(ın − gnkdyk∧)Ψ± = 0 . (7.2)

Note that J1 is somehow selected by the property that its +i eigenspace defines through the

above equations the (complex) three dimensional space given by the intersection of the two

null subspaces of the two pure spinors Ψ±. Indeed, by looking at the F-flatness conditions

as written in (2.16), it is clear that J1 plays a particular role. We are then naturally

led to use J1 to define an almost complex structure on TM |Σ, and consequently obtain

the almost complex structure J on C through the above identifications. Holomorphic and

antiholomorphic tangent vectors in TC |(Σ,F) are given by (complex) vector fields Z and Z̄,

sections of T C
M |Σ, satisfying the conditions Zm = 1

2(1−iJ1)n
mZn and Z̄m = 1

2(1+iJ1)n
mZ̄n

respectively. From (7.2) and the discussion of section 4 it is clear that the variation of a

superpotential with respect to an anti-holomorphic Z̄ vanish identically:

Z̄(W) =
1

2

∫

Z̄mP [(ım + gmkdyk∧)Ψ̂2] ∧ eF ≡ 0 . (7.3)

Then, the superpotential is holomorphic with respect to the almost complex structure J.

Furthermore, it clear that the metric G defined in (3.6) can be identified as a Hermitian

metric on C naturally inherited from the background metric.

We would like now to argue that, if we restrict to Chol ⊂ C, the almost complex

structure J reduces to the one naturally induced by the integrable generalized complex

structure J2 as described above. This can be understood when we give an interpretation

of J from the point of view of the generalized complex geometry of the internal space

M . Suppose to have a subbundle of (TM ⊕ T ∗
M )|Σ that can be identified with N(Σ,F) in

a particular “gauge”. If this subbundle is stable under the action of J2 then J2 can be

used to define an almost complex structure on it. Thus J2 induces an almost complex

structure on N(Σ,F) and as a consequence on C. The generalized metric structure given by

the SU(3) × SU(3) structure of our backgrounds provides such a subbundle. Let us start

by defining the following orthogonal subspaces of TM ⊕ T ∗
M [7]

C± = graph{±g : TM → T ∗
M} . (7.4)

Note that C+ ⊕ C− = TM ⊕ T ∗
M and that C± are both isomorphic to TM through the

projection map π : TM ⊕ T ∗
M → TM . Both C+|Σ and C−|Σ indeed provide a subbundle of

(TM ⊕ T ∗
M )|Σ that is isomorphic to N(Σ,F). In order for them to be suitable for defining

an almost complex structure on N(Σ,F), and then on C, we have to verify that C+|Σ and

C−|Σ are stable under the action of J2. This can be seen by observing that, in our

SU(3) × SU(3) structure manifolds, the integrable generalized complex structure J2 (and

also the non-integrable J1) can be written in terms of J1 and J2 by restricting to C+ and

C− and then using the isomorphism C± ' TM [7]. More precisely, remembering that J2 is

given by J+ in Type IIA and J− in Type IIB, we have that

J± = π|−1
C+

J1πP+ ∓ π|−1
C−

J2πP− , (7.5)

where P± are the projectors on C±.
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It is then clear that C± are stable under J2 and can be used to define an almost complex

structure on C as explained above. In particular, using the isomorphism C± ' TM , the

resulting almost complex structure is essentially given by J1 if we use C+ and by −J2 or

J2, in Type IIA or Type IIB respectively, if we use C−. We then see that the choice of C+

is somehow selected by its invariance under mirror symmetry. Indeed, the resulting almost

complex structure coincides with the one constructed previously in a more direct way, with

respect to which the superpotential is holomorphic. Finally, note that in general the almost

complex structure J defined in this way depends on the SU(3) × SU(3) structure of the

background. However, when we restrict to Chol, i.e. to generalized complex submanifolds,

this obviously coincides with the natural one that, as we have already said, in this case can

be defined referring only to the generalized complex structure J2.

Consider now the alternative subbundle of (TM ⊕ T ∗
M )|Σ isomorphic to N(Σ,F), whose

elements are restricted to be of the form (X⊥, a) ∈ Γ(T⊥
Σ ⊕ T ∗

Σ). Of course any element of

C+|Σ can be put in this form by an appropriate ‘gauge’ transformation. If (X, g ·X) ∈ C+,

we can identify it with its image under the translation given by (−X||,−ıX||
F − g · X⊥)

(where the meaning of the notation should be obvious). The resulting vector is given by

(X⊥, (g +F) ·X||). Then, using the isomorphism given by π to identify (X, g ·X) with X,

we also find an interpretation from the generalized complex geometry point of view of the

identification

X = X|| + X⊥ ↔ (X⊥, a) with a = (g + F) · X|| . (7.6)

This identification was already introduced somehow ad hoc in section 4 to identify the

F-flatness conditions in the form given in (2.16) as conditions for the critical points of the

superpotential (4.9).

To summarize, we have constructed an almost complex structure J on the space C of

the generalized cycles (Σ,F), with respect to which the superpotential W defined in (4.9)

is holomorphic and the metric G defined in (3.6) is Hermitian. At the end of the following

section we will see how this almost complex structure induces also an almost complex

structure on the space Chol that actually depends only on the integrable generalized complex

structure on M .

8. Reduced configuration and moduli spaces

In this section we would like to discuss the gauge symmetries under which the superpotential

W is left invariant and consider the resulting reduced configuration space and the associated

reduced subspace of the space Chol of critical points of W. Clearly, if we parametrize the

possible deformations of the world-volume field-strength F with a one-form a as we have

explained in section 4 (and more extensively in appendix A), then any transformation

generated by an exact a = dλ, with λ some function on Σ, is a gauge symmetry of W.

Following the previous discussions, the above gauge symmetry generated by λ can be

identified with the tangent vector field Xλ ∈ Γ(TΣ) such that dλ = (P [g] + F) · Xλ, that

can in turn be seen as a vector tangent to C at (Σ,F). Call g the subbundle of TC spanned

by such vectors Xλ. Now, the holomorphicity of W with respect to the almost complex
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structure J automatically implies that W is not only left invariant by the general Xλ

defined above, but also under its image JXλ under J, that we can consider as its imaginary

extension. This means that W is invariant under the action of the general section of the

subbundle gC generated by the vectors of the form Xλ and JXλ. Indeed, the holomorphicity

of W implies that, for any Y ∈ Γ(TC),

(1 + iJ)Y (W) ≡ 0 , (8.1)

and then

Xλ(W) ≡ 0 ⇒ JXλ(W) ≡ 0 . (8.2)

It can be clarifying to see how this “complexification” of the natural u(1) gauge sym-

metry of the internal generalized cycle (Σ,F) reduces to standard ones when we restrict to

the well studied subcases of A and B branes on Calabi-Yau 3-folds. In the Calabi-Yau case,

J1 is equal to J2 and is the proper (integrable) complex structure of the Calabi-Yau. Con-

sider first B-branes. These wrap holomorphic cycles with holomorphic connections A on

them (such that F = dA). In this case, JXλ generate the transformation δA = i(∂λ − ∂̄λ)

which is properly identified as an imaginary transformation of the complexified gauge al-

gebra u(1)C = C∗. Secondly, consider a Lagrangian A-branes Σ, with U(1) flat connection

A (such that F = dA = 0). In this case JXλ is associated to a normal vector field of the

form J1P [g]−1dλ, which corresponds exactly to the general normal vector field generating

Hamiltonian deformations of the Lagrangian A-brane, that must be indeed considered as

gauge symmetries relating equivalent Lagrangians. We then see how our formalism in-

clude these specific subcases and provide their natural extension to less trivial N = 1 (and

N = 2) flux compactifications.

Note that in the above example with A and B branes, we have really restricted to

the space Chol, while analysis presented above is valid for the whole M. This has been

possible due to the property that TChol
is clearly stable under the action of J and then Chol

is preserved under the action of gC.11 The subspace Chol is also special because, as we have

discussed in section 7, the almost complex structure J restricted to it can be defined using

only the integrable generalized complex structure on M , without any need to involve the

SU(3)× SU(3) structure. This property implies that the generalized complex structure J2

on M naturally induces an almost complex structure on Chol. Note that, since only the

integrable generalized complex structure is involved in this definition, all the discussion can

be adapted to the case in which we consider topological branes of the underlying topological

model [11, 5].

11The subspace Chol can be defined by the condition dW|Chol
= 0 and then a vector X ∈ TC|Chol

tangent

to Chol can be defined by the condition

d[X(W)]|Chol
= 0 , (8.3)

where, in each point (Σ,F) ∈ Chol, we consider X as a field obtained extending a vector X ∈ TC|(Σ,F) to

a neighborhood of (Σ,F) (of course the condition (8.3) does not depend on the choice of the extension).

From the holomorphicity of the superpotential one can thus conclude that if X is tangent to Chol then also

JX is tangent to Chol. This means that TChol
is stable under the action of J. Then, since Chol is stable under

the action of g, it is also stable under the action of g
C.
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The natural question is if such an almost complex structure on Chol is actually inte-

grable. Unfortunately, already in the case of standard Calabi-Yau compactifications the

answer is not well understood in general. For example, one can introduce an almost com-

plex structure of the space of Lagrangian submanifolds (with flat U(1) connection) using

the symplectic structure of the Calabi-Yau. The resulting almost complex structure mixes

embedding and gauge “coordinates”, and its integrability issue is still not clear12 (see for

example [22]). Since our analysis includes this special subcase, we do not try to give an

answer to the problem in the present paper. It would be interesting to understand better

this issue from the generalized geometry point of view, that appears to be the natural

complex-symplectic unifying language to better approach it.

Finally, observe that one can use J to naturally induce an almost complex structure

on Cred = C/GC, where GC is the group of finite gauge transformations generated by gC.

Furthermore, since the superpotential W is left invariant by the action of GC, we can also

introduce an almost complex structure on the quotient space M = Chol/GC. As will be clear

from the discussion of the following section, M can be identified as the moduli space of the

supersymmetric configurations of a space-time filling D-brane. Furthermore, it is known

that in the case of Lagrangian branes on ordinary Calabi-Yau 3-folds, the above almost

complex structure on Chol descends to an integrable complex structure on the corresponding

M (i.e. on the moduli space of special Lagrangian branes). Thus, it seems plausible to

hope that the above almost complex structure on M can be in fact integrable also in the

most general case. We postpone the investigation of this interesting problem to future

investigations.

9. D-flatness and moment map

In this section we will consider more closely the supersymmetry D-flatness condition written

in (2.16). As we already discussed in section 3 this condition can be indeed seen as coming

from the vanishing of a D-term associated to the effective four-dimensional theory. As

we will now see, the D-flatness condition provide a gauge fixing slice for the action of the

imaginary extension of the gauge group, and then select a particular hypersurface C0 in C.

The action of G foliates C0 in gauge orbits and the base of such a foliation can be identified

as the reduced moduli space M.

The argument is based on the possibility to see the D-flatness condition as the vanishing

of a moment map associated to the gauge transformation discussed in the previous section,

defined with respect to a properly introduced symplectic form. The approach is completely

analogous to the one used in the study of branes in Calabi-Yau spaces (see e.g. Chapter 38

of [23] for a review), even if it differs from it in some details. Let us start by introducing

the following formal symplectic structure on C. Looking at the vectors X,Y ∈ TC |(Σ,F) as

sections of TM |Σ by the usual identification, we introduce the following symplectic form

Ξ(X,Y )|(Σ,F) =

∫

Σ
XmY nP [e2A−Φ(γ̂mn + Fmn)ImΨ̂1] ∧ eF , (9.1)

12I thank R.P. Thomas for correspondence on this point.
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where with Fmn we mean the natural extension with zero orthogonal components of the

world-volume field-strength F to the complete TM |Σ, and we recall that the six dimensional

gamma matrices γ̂m act on a form ω as follows

γ̂mω = (ım + gmndyn∧)ω . (9.2)

It is easy to see that using the alternative coordinatization for TC given by (X⊥, a) and

(Y⊥, b) associated to X and Y respectively by (7.6), the above symplectic form takes the

form

Ξ[(X⊥, a), (Y⊥, b)]|(Σ,F) =

∫

Σ

{

a ∧ b ∧ P [e2A−ΦImΨ̂1] + P [e2A−ΦıX⊥
ıY⊥

ImΨ̂1] + (9.3)

+a ∧ P [e2A−ΦıY⊥
ImΨ̂1] − b ∧ P [e2A−ΦıX⊥

ImΨ̂1]
}

∧ eF .

Note that if we restrict to the case of D-branes on Calabi-Yau manifolds, the above

symplectic structure coincides with the Kähler forms constructed for A and B branes. As

in that case, we will not worry whether Ξ is closed or not, since it will not really be relevant

for what follows (for discussions on this point see [22]). Note also that, in our general case,

Ξ cannot be seen as the Kähler form Θ that can be constructed from the metric G defined

in (3.6) and the complex structure J (i.e. Θ(X,Y ) = G(X, JY )). However Ξ and Θ are

related in the following way

Θ(X,Y )|(Σ,F) =
1

2

[

Ξ(X,Y ) + Ξ(JX, JY )
]

|(Σ,F) +

−1

2

∫

Σ

{

F(X,Y ) + F(JX, JY )
}

P [e2A−ΦImΨ̂1] ∧ eF . (9.4)

We can now introduce the moment map m : C → Γ(ΛtopT ∗
Σ) as follows

m(Σ,F) = P [e2A−ΦImΨ̂1] ∧ eF |top . (9.5)

The moment map m associates any world-volume function λ generating a gauge transfor-

mation to the corresponding Hamiltonian function (with respect to the symplectic form Ξ)

given by the pairing

〈m(Σ,F), λ〉 =

∫

Σ
λP [e2A−ΦImΨ̂1] ∧ eF . (9.6)

To prove it, it is sufficient to verify that, for any vector Y ∈ TC |(Σ,F), we have

d〈m(Σ,F), λ〉(Y ) = Ξ(Xλ, Y ) , (9.7)

where Xλ ∈ Γ(TΣ) is the vector generating the gauge transformation and is defined by the

relation dλ = (P [g] + F) · Xλ (see section 8). We can then conclude that the D-flatness

condition in (2.16) can be seen as the restriction to the subspace of C given by m−1(0). It

is clear that any (real) gauge transformation λ preserves the constraint m(Σ,F) = 0, since

for any h we have that

Xλ(〈m(Σ,F), h〉) = Ξ(Xh,Xλ) =

∫

Σ
dh ∧ dλ ∧ P [e2A−ΦImΨ̂1] ∧ eF ≡ 0 , (9.8)
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where we have used the dH -closedness of e2A−ΦImΨ̂1. On the other hand, it is easy to see

that m−1(0) does provide a gauge fixing section for the imaginary gauge transformations.

To show this, consider the general imaginary gauge transformation generated by a vector

of the form JXλ, with λ a general world-volume function as before. Then one can readily

realize that if (Σ,F) ∈ m−1(0) then (JXλ)(〈m(Σ,F), h〉) cannot vanish for any h. To see

it, it is enough to take h = λ: using the relation (9.4) to relate Ξ to the Kähler form Θ,

we have that

(JXλ)(〈m(Σ,F), λ〉)|m−1(0) = Ξ(Xλ, JXλ)|m−1(0) = Θ(Xλ, JXλ)|m−1(0)

= −G(Xλ,Xλ)|m−1(0) , (9.9)

which generally never vanishes.

Let us note that in the definition of the symplectic structure (9.3) we have used in

an essential way the background metric to again identify N(Σ,F) with T⊥
Σ ⊕ T ∗

Σ. This is

analogous to what happens in the definition of the almost complex structure J defined

in section 7. However, analogously to what happens that case, it is easy to see that if

we restrict to m−1(0) the symplectic structure (9.3) is canonically defined on sections of

N(Σ,F), in the sense that does not depend on the choice of the subbundle of TM ⊕ T ∗
M |Σ

that should represent N(Σ,F) in a particular ‘gauge’.

Then, to summarize, the D-flatness condition in (2.16) can be written in the form

m(Σ,F) = 0 and clearly provide a global section for the imaginary gauge transformations

described in section 8. The resulting constrained space m−1(0) is closed under real gauge

orbits generated by G and the quotient space m−1(0)/G provide a characterization of the

reduced configuration space Cred = C/GC. Furthermore, the same conclusions can be

reached if we restrict to the space Chol of generalized complex submanifolds, and then we

can make the identifications M = Chol/GC = [Chol ∩ m−1(0)]/G. Whether in each orbit

of GC inside Chol there exists or not a G orbit satisfying the D-flatness condition (and

thus minimizing the four-dimensional energy density) can be seen as a generalization of

the standard formulation of the stability problem that would be interesting to understand

better in the present context. Finally, we have stressed that (9.3) can be only formally

considered a symplectic form, since it is in general non-closed. However, from the knowledge

of what happens in the standard Calabi-Yau case, it is possible to expect that the closedness

can be recovered by restricting to M. As the issue of the integrability of the almost complex

structure J, the problem to understand in what sense we can consider the symplectic

structure (9.3) as actually closed requires further investigations.

10. Examples and applications for D-branes in

SU(3)-structure vacua

In this section we will consider some basic examples where we can apply explicitly the

analysis presented in the previous sections. In particular, we will restrict a little the

general setting by focusing on supersymmetric backgrounds with internal SU(3)-structure,

which are the closest to ordinary flux-less compactifications on Calabi-Yau three-folds. Let

– 26 –



J
H
E
P
0
6
(
2
0
0
6
)
0
3
3

us review some of their properties [28, 5, 56]. The SU(3)-structure vacua are characterized

by the property that the two internal Weyl spinors η
(1)
+ and η

(2)
+ are actually proportional.

It means that we can write them as η(1) = aη+ and η(2) = bη+, in terms of a single internal

spinor η+, such that η†+η+ = 1. As we have recalled in section 2, since we are considering

D-calibrated backgrounds, we must furthermore impose that |a| = |b|. Thus we pose

a = eiϕ1 |a| , b = eiϕ2 |a| . (10.1)

From η+ one can construct an almost complex structure J (with respect to which the

internal metric is hermitian) and a (3, 0) form Ω in the following way

Jm
n = − i

|a|2 η†+γ̂m
nη , Ωmnp = − i

a2
η†−γ̂mnpη+ . (10.2)

J and Ω have all the algebraic properties of the complex structure and the holomorphic

three form on a standard Calabi-Yau three-fold (see [57] for a review). In this case the two

normalized pure spinors (2.13) become

Ψ̂+ = −iei(ϕ1−ϕ2)e−iJ , Ψ̂− = −ei(ϕ1+ϕ2)Ω . (10.3)

Here and in the following we use J to indicate also the Kähler form associated to the almost

complex structure (the actual meaning being clear from the context). In the particular

N = 2 subcase in which the internal space is a standard Calabi-Yau, the expressions (10.3)

for the pure spinors are still valid, but with constant arbitrary overall phases.

From (10.3) it follows that SU(3)-structure backgrounds are somehow special in the

whole family of SU(3) × SU(3)-structure backgrounds: in Type IIB the internal space is

actually complex with c1(M) = 0 while in Type IIA the internal manifold is symplectic. In

the following examples we will re-obtain these and other needed properties of the SU(3)-

structure backgrounds [28, 5] directly from the supersymmetry conditions (2.8). In this

way, we will have a further case-by-case check of the deep relation between the N = 1

backgrounds we are considering and the supersymmetric D-branes they admit. Namely,

we will focus on D3, D5, D6 and D7-branes, with particular attention to this last case.

Supersymmetric D4-branes are not allowed in Type IIA SU(3)-structure backgrounds [8].

D8- and D9-branes can be analyzed along the same lines of the cases explicitly discussed

below. Let us make only a comment on the D9-brane case. In this case, we can write

the superpotential (4.9) by thinking as we had one more dimension. Furthermore the

non-abelian generalization is straightforward in this case and simply replaces F ∧ F with

the non-abelian analogous TrF ∧ F . Then, if we consider the case of an internal flux-less

Calabi-Yau and F = dA + A ∧ A, the resulting superpotential becomes up to a constant

W =
1

4

∫

CY3

Ω ∧ Tr

(

A ∧ ∂̄A +
2

3
A ∧ A ∧ A

)

, (10.4)

thus reproducing the Witten’s Chern-Simons theory describing B-branes filling a Calabi-

Yau three-fold [3].
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10.1 D3-branes

If we consider the simplest case of D3-branes in a SU(3)-structure Type IIB background,

the space of possible configurations corresponds to the internal space itself, and then has

naturally a complex structure. However, in general the configuration space is not Kähler

without imposing some further condition.

The superpotential (4.9) for D3-branes vanishes identically and thus the F-flatness

condition is always satisfied. On the other hand, the D-flatness condition is simply given by

cos(ϕ1 − ϕ2)|y0 = 0 ⇔ (a ± ib)|y0 = 0 , (10.5)

where y0 is the point of the internal manifolds where the D3-brane is located and the actual

sign on the right-hand side of (10.5) depends on the orientation of the D3-brane. Note that

from the first background condition in (2.8) one obtains that d[e2A−Φ cos(ϕ1 − ϕ2)] = 0

and thus, if the condition (10.5) is satisfied in a point, it is satisfied everywhere. This is

consistent with the fact that in the case of a single D3-brane we do not have any charged

matter field under the gauge group and then we cannot have any non-trivial D-term around

a supersymmetric configuration.

The condition a = ±ib characterizes the so-called type B backgrounds, first considered

in [58 – 60], which constitute the supersymmetric subsector of the class of supergravity

solutions discussed in [61] (see also the recent review [4]). In this case, the second condition

in (2.8) translates into the following two conditions

dΩ̃ = 0 , Ω̃ ∧ H = 0 . (10.6)

where, to stress the analogy with the standard Calabi-Yau case, we have introduced the

holomorphic (3, 0)-form Ω̃ defined as

Ω̃ = −e3A−Φe2iϕ1Ω . (10.7)

The first condition in (10.6) tells us that all these backgrounds (like all the other SU(3)-

structure Type IIB vacua) are actually complex. The second condition simply means

that H has only (2, 1) and (1, 2) components. Looking now at the real part of the first

supersymmetry condition in (2.8), we obtain the conditions

d(e2A−ΦJ) = 0 , H ∧ J = 0 . (10.8)

The first condition implies that the internal space is a warped Kähler space, with warp-

factor e−2A+Φ, so that the closed Kähler form is given by J (K) = e2A−ΦJ . The second

condition in (10.8), together with the second condition in (10.6), are part of the more

general requirement that, in these type B solutions, the complex three form G(3) = F(3)−τH

(where τ = C(0) + ie−Φ) must be (2, 1) and primitive. To obtain the cases in which the

internal space is actually a warped Calabi-Yau [58, 59], one must impose that the dilaton is

constant (actually τ must be constant). This condition can be easily obtained by requiring

that in the Calabi-Yau case J (K) ∧ J (K) ∧ J (K) must be proportional, up to a constant

factor, to iΩ̃ ∧ ¯̃Ω.
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From this short review of some of the main properties of the type B vacua, we reach the

conclusion that, if the moduli space of supersymmetric D3-branes must coincide with the

internal manifold itself, then it is automatically a Kälher manifold that, if we furthermore

require a constant dilaton, is also Calabi-Yau.

10.2 D5-branes

In the case of D5-branes wrapping an internal two-cycle Σ the superpotential (4.9) takes

the form of the Witten’s superpotential [17]

W = W0 +
1

2

∫

B
P [Ω̃] , (10.9)

where again we used the holomorphic (3, 0)-form Ω̃ ≡ e3A−ΦΨ̂−. By considering a com-

plex coordinatization zi (i = 1, 2, 3) of the internal space, we can specify the embedding

using complex fields φi(σ) (where σα are world-volume coordinates). The superpotential is

clearly holomorphic with respect to these complex fields. However, if we want to consider

the superpotential as a functional on the space of diffeomorphism equivalent cycles, the

background complex structure does not naturally induce a complex structure for it, and

we need some additional structure. Indeed, the almost complex structure J introduced in

section 7 uses two additional ingredients: the background metric that allows to identify

explicitly the normal bundle of the two-cycle with its orthogonal bundle, and the world-

volume gauge field, which is in general mixed with the embedding coordinates under the

action of the almost complex structure.

Turning to the D-flatness condition, it takes the form

F = −tg(ϕ1 − ϕ2)PΣ[J ] . (10.10)

Then, if one wants to admit supersymmetric D5-branes with zero F , it is natural to impose

everywhere the condition ϕ1 − ϕ2 = 0 or π, or equivalently a = ±b (more in general, it

would be sufficient to impose such a condition only where the brane is located). This

condition defines the so called type C backgrounds (see e.g. [4] for more on them), of

which the Maldacena-Nuñez solution [62] provides the most known explicit example. A

different and somehow special case is obtained by considering a type B background, that

is ϕ1 − ϕ2 = ±π
2 . The D5-brane can then be supersymmetric only if it wraps a collapsed

cycle (so that PΣ[J ] = 0) with a non-vanishing F field on it, in such a way to have a

non-vanishing tension. The resulting configurations are fractional D3-branes, that are well

known supersymmetric configurations giving rise to corresponding backgrounds with fluxes.

Note that, in the case of type C solutions (fixing for example ϕ1−ϕ2 = 0), from the real

part of the first supersymmetry condition in (2.8) one can directly obtain the conditions

d(2A − Φ) = 0 and H = 0. Thus, it is not difficult to see that the symplectic form (9.3)

takes the form

Ξ(X,Y ) = −e2A−Φ

∫

Σ

{

a ∧ b +
1

2
P [ıY⊥

ıX⊥
(J ∧ J)]

}

(10.11)
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where we have moved e2A−Φ out of the integral since it is constant. If moreover we restrict

to the case of holomorphic two-cycles, this symplectic form becomes

Ξ(X,Y ) = −e2A−Φ

∫

Σ

{

a ∧ b + J(X⊥, Y⊥)P [J ]
}

. (10.12)

One can immediately check that the moment map for the ordinary gauge transformations

a = dλ is given by m(Σ,F) = −e2A−ΦF , consistent with our general discussion. Imposing

that it must vanish is of course equivalent to the D-flatness condition (10.10). Note that

the restricted Ξ given in (10.12) can be directly related to the Kähler two-from Θ (see

section 9) in the following way

Ξ(X,Y ) = Θ(X,Y ) − e2A−Φ

∫

Σ
F(X,Y )F . (10.13)

Note that, also comparing with the general formula (9.4), in this case we have clearly that

Ξ(X,Y ) is of the type (1, 1). Thus, it can be seen as a deformation of the Kähler form Θ

due to the presence of nontrivial world-volume F .

10.3 D6-branes

Let us now consider the case of a D6-brane wrapping an internal three-cycle in a Type

IIA SU(3)-structure background. Note first of all that, from the second supersymmetry

condition in (2.8), we immediately obtain that 3A − Φ + i(ϕ1 − ϕ2) must be constant, H

must vanish, and dJ = 0. This explicitly checks the known property that the internal space

must be symplectic (but in general not complex). Thus, we can write the superpotential

for D6-branes in the following explicit form

W = W0 −
1

2
e3A−Φ+i(ϕ1−ϕ2)

∫

B

{

P [J ] ∧ F̃ +
i

2
P [J ∧ J ] − i

2
F̃ ∧ F̃

}

(10.14)

One can easily check that in this case a generalized complex three-cycle corresponds to a

Lagrangian submanifold with vanishing field-strength, i.e.

PΣ[J ] = 0 , F = 0 . (10.15)

Note that (10.14) is completely identical in form to the holomorphic functional presented

for example in [22], that can be written in the form of the standard Chern-Simons action

that was proved in [3] to describe Lagrangian A-branes.

Let us now consider the D-flatness condition, which reads

PΣ[ImΩ̃] = 0 . (10.16)

where again we have posed Ω̃ = e2A−Φei(ϕ1+ϕ2)Ω, which obeys the condition d(ImΩ̃) = 0.

Note that in this case we do not have any immediate constraint to be imposed on the

background in order for it to admit a supersymmetric D6-brane. The only obvious necessary

condition is the following topological condition that must be imposed on the brane
∫

PΣ[ImΩ̃] = 0 . (10.17)
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The formal symplectic form (9.3), when evaluated in a general point of the configura-

tion space C, is explicitly given by

Ξ(X,Y ) =

∫

Σ

{

a ∧ P [ıY⊥
ImΩ̃] − b ∧ P [ıX⊥

ImΩ̃] + P [ıX⊥
ıY⊥

ImΩ̃] ∧ F
}

. (10.18)

If we now restrict to the superpotential critical subspace Chol of Lagrangian cycles, the

symplectic form reduces to

Ξ(X,Y ) =

∫

Σ

{

a ∧ P [ıY⊥
ImΩ̃] − b ∧ P [ıX⊥

ImΩ̃]
}

. (10.19)

This is identical in form to the symplectic form introduced in [22] for Lagrangian branes

with flat U(1) connection on ordinary Calabi-Yau three-folds.

10.4 D7-branes

The final case that we analyze explicitly is that of a D7-brane in a Type II SU(3)-structure

background. In order to be more concrete, let us focus on the case in which the background

is of the type B described in the discussion about D3-branes. As we have already said,

these backgrounds can be thought of as generated by D3 and/or fractional D3 and/or

D7-branes [60] and their internal manifold has a warped Kähler metric with Kähler form

J (K) = e2A−ΦJ and a global holomorphic (3, 0)-form Ω̃ defined in (10.7). This will allow us

to discuss some interesting additional issues related to the moduli space of the D7-brane.

In type B backgrounds, the superpotential for the D7-brane is given by

W(Σ,F) = W0 +
1

2

∫

B
P [Ω̃] ∧ F̃ . (10.20)

We already know that the extrema of this superpotential are given by D-branes wrapping

generalized complex submanifolds (Σ,F), with Σ holomorphically embedded and F of kind

(1, 1). Let us see this directly from the superpotential (10.20). The variation with respect

of the world-volume gauge field gives the condition

PΣ[Ω̃] = 0 . (10.21)

This condition requires the cycle Σ to be holomorphically embedded. The additional F-

flatness condition that F must be of kind (1, 1) can be derived by varying the embedding

coordinates along the vector field X ∈ Γ(TM |Σ) and transforming the world-volume field

strength accordingly to the rule δF = PΣ[ıXH]. The resulting derivative of the superpo-

tential is given by

PΣ[ıXΩ̃] ∧ F , (10.22)

which clearly vanishes only if F(0,2) = 0. Note that, as we have already discussed in general

in section 4, once we take into account the other condition (10.21), the condition (10.22) is

well defined also thinking to X as a section of the canonical normal bundle NΣ = TM |Σ/TΣ.

Now, in principle the superpotential (10.20) takes into account all the possible internal

fluctuation modes of the D7-brane. One could then ‘integrate out’ the heavy massive modes,
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to obtain an effective superpotential for the light ones, as described in [3]. More directly,

the superpotential (10.20) allows to immediatly discuss a mechanism of flux-generated

lifting of the possible moduli fields corresponding to the infinitesimal deformations of a

holomorphic cycle. Such an effect was discussed in [32] using a different procedure in

the less general case where the internal manifold is a warped Calabi-Yau. The following

discussion generalizes it and clarifies its origin.

Let us first recall that the possible infinitesimal deformations of a holomorphic cycle

Σ (of arbitrary dimension) are given by the space of global sections H0(Σ,N hol
Σ ) of the

holomorphic normal bundle N hol
Σ = T 1,0

M |Σ/T 1,0
Σ . In our case, Σ is a divisor. By the

triviality of the canonical bundle of M and the adjunction formula, one obtains the standard

result that H0(Σ,N hol
Σ ) = H2,0(Σ). Thus, there are h2,0(Σ) = dimH2,0(Σ) possible moduli

deformations parametrized by complex coordinates ti, i = 1, . . . , h2,0(Σ).

The first order derivative by ti of the superpotential (10.20) is given by

∂iW =
1

2

∫

Σ
PΣ[ıXi

Ω̃] ∧ F , (10.23)

where Xi is the holomorphic section of N hol
Σ generating the shift in ti. Obviously (10.23)

vanishes in a point t0 where F is (1, 1) and in general one obtains a set of h2,0(Σ) possible

moduli lifting conditions

ai(t) ≡
∫

Σ
PΣ[ıXi

Ω̃] ∧ F = 0 , (10.24)

that can in principle lift all the possible h2,0(Σ) moduli fields ti. In [32], the set of h2,0(Σ)

conditions ai(t) = 0 were found by a rather different way in the warped Calabi-Yau subcase,

conjecturing that the ai’s could be identified as the first derivatives of a superpotential.

Equation (10.23) gives a direct confirmation and generalization of that proposal.

Possible holomorphic mass terms can be now in principle computed by taking a further

derivative of the superpotential. Let us first of all recall that, already in the flux-less Calabi-

Yau case, when T 1,0
M |Σ does not holomorphically split into T 1,0

Σ ⊕N hol
Σ some of the h2,0(Σ)

infinitesimal embedding deformations may be in fact massive, due to possible obstructions

coming from the holomorphic line bundle on the brane [64]. The superpotential (10.20)

directly exhibits the possible presence of this kind of obstructions, even in the more general

case of backgrounds with fluxes we are considering. Indeed, the variation of PΣ[ıXi
Ω̃]

in (10.23) may produce in general a (1, 1) form that, combined with a non-trivial (1, 1)

world-volume field-strength F , can give non-vanishing mass terms for the ti’s.13

In order to focus on mass terms that are a peculiar effect of the background fluxes, let

us now assume the holomorphic splitting of T 1,0
M |Σ into T 1,0

Σ ⊕N hol
Σ . In this case, when the

internal manifold is a standard flux-less Calabi-Yau, the ti’s are massless, even if there can

be possible higher order obstructions (like the standard ones that lies in H1(Σ,N hol
Σ ) [63])

that should be described by non-trivial higher order terms in the superpotential (10.20) (see

for example the related discussions in [10, 18, 19]). However, from the superpotential (4.9)

13This observation is due to F. Denef, who I thank for discussions on this point.
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one can easily realize that, in presence of a non-trivial background H-flux, the ti’s can

in general cease to be massless. To see this, it is enough to take the second derivative

of the superpotential around a point t0 corresponding to a generalized holomorphic cycle

(Σ0,F0), obtaining the following holomorphic mass matrix

mij(t0) ≡ (∂i∂jW)(t0) =
1

2

∫

Σ0

PΣ0 [ıXi
Ω̃ ∧ ıXj

H] . (10.25)

The formula (10.25) explicitly shows how a nontrivial H-flux can induce holomorphic mass

terms (that would otherwise vanish) for the possible embedding moduli.

If the F-flatness conditions are satisfied, in order to obtain a full supersymmetric

configuration we have still to impose the D-flatness condition, that in this case reads

PΣ[J ] ∧ F = 0 . (10.26)

Such a condition is a generalization of what is known as a Hermitian-Yang-Mills condition

in standard Yang-Mills theories. We can then easily adapt the standard argument for an

abelian Yang-Mills theory (see for example [65]) to prove that in each orbit of different F ’s

generated by the imaginary extension of the (abelian) gauge group there is a particular F
satisfying the D-term condition (10.26) if and only if the condition

∫

Σ
P [e2A−ΦJ ] ∧ F = 0 , (10.27)

is satisfied. Indeed the imaginary gauge transformation acts as δF = i∂∂̄λ, where λ is any

real function on Σ and ∂ and ∂̄ are the standard Dolbeault differential operators on Σ. It

immediately follows that the condition (10.27) is necessary and sufficient for the existence

of a λ such that the transformed F satisfies (10.26). Note also that the condition (10.27)

is actually topological (in the sense that it is left invariant by any continuous deformation

of Σ and F), due to the primitivity condition J ∧ H = 0.

Also, from the general discussion of section 9, we know that the D-flatness condi-

tion (10.27) can be obtained as the vanishing moment map condition associated to the

symplectic form (9.3). Restricting to supersymmetric configurations, for which F = −∗4F ,

we can rewrite it in the form

Ξ[(Xi, a), (X̄k̄ , b̄)]|susy = −
∫

Σ
e2A−Φa ∧ b̄ ∧ P [J ] +

− i

8

∫

Σ
e2A−Φ

(

1 +
1

2
F2

)

P [ıXi
Ω ∧ ıX̄k̄

Ω̄] , (10.28)

where the indexes in F2 are contracted with the induced metric P [g].

As a further application, from the formulas (3.6) and (3.8) we can also find a general

formula for the flux-induced physical mass term for the embedding moduli ti around a

supersymmetric configuration (Σ0,F0). From (3.6), one immediately obtains that the

metric for the embedding holomorphic deformations is given by

Gik̄ =
1

8

∫

Σ
e2A−Φ

(

1 +
1

2
F2

)

PΣ0 [ıXi
Ω ∧ ıX̄k̄

Ω̄] . (10.29)
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In the approximation in which the warp-factor, the non-trivial dilaton and F can be ne-

glected, this metric reduces to the Kähler metric for the embedding moduli found in [31].

Thus, from (3.8) and reintroducing the tension as described after (4.14), we obtain the

following quadratic term in the potential

V ' M2
ik̄

(t − t0)
i(t̄ − t̄0)

k̄ + · · · , (10.30)

where the physical mass matrix M2 is given by

M2
ik̄

= Grs̄(t0)mir(t0)m̄k̄s̄(t0) . (10.31)

Thus, the superpotential generates flux-induced mass terms for the embedding moduli of

the D7-branes in a general type B background. Analogous massive terms where computed

in [32] by a different argument in the subcase of internal warped Calabi-Yau spaces and

F0 = 0.

To be even more concrete, we could consider the simplified case when the divisor Σ has

trivial canonical bundle and we can write M ' Σ×C globally on a cylindrical neighborhood

of Σ0, in such a way that J (K) = PΣ[J (K)] + idt∧ dt̄, where t is the holomorphic transverse

coordinate in C. In this case the only holomorphic embedding deformation given by the

position t of Σ in C. Let us introduce the holomorphic (2, 0) form ω on Σ such that

Ω̃ = ω ∧ dt. Then we have that

Gtt̄ =

∫

Σ
eΦ

(

1 +
1

2
F2

)

dV ol4 ,

mtt = − igs

4

∫

Σ
eΦω ∧ P [ı∂t

Ḡ(3)] . (10.32)

Thus, by posing t = 2πα′φ and g2
YM = (2π)5(α′)2gs/Gtt̄, we can write the following canon-

ical quadratic Lagrangian for φ

L = − 1

g2
YM

(∂µφ∂µφ̄ + M2φφ̄) . (10.33)

where M2 = G−2
tt̄

|mtt|2. As a check, we can consider the simplest case where the internal

manifold is a six torus (T2)3, and assume that the warped factor and the G(3) are constant

on the wrapped Σ = (T2)2. In this case, defining S = 2G12t̄, we can write

g2
YM =

(2π)5(α′)2gs

V ol4(Σ) − 1
2

∫

Σ F ∧ F , M2 =
g2
se

8A0 |S|2

8 + 2
(

R

Σ F∧F

V ol4(Σ)

)2 . (10.34)

The result (10.34) provides the generalization to arbitrary F 6= 0 of the supersymmetric

massive term found in [29] in the case F = 0 by direct dimensional reduction of the D7-

brane action.

Finally, if we further assume that we can make a gauge choice such that the B field

is a globally defined (1, 1)-form on M ' Σ × C, then the superpotential (10.20) can be

written in the form

W =
1

2

∫

Σ
tω ∧ f , (10.35)
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where f = F − P [B] is the proper U(1) field strength on Σ. This superpotential coincides

with the superpotential found in [20], for a class of F-theory backgrounds, and in [21], by

dimensional reduction of the DBI plus CS D7-branes action on Calabi-Yau orientifolds. In

these papers was also found a D-term of the form

D ∼
∫

Σ
P [J (K)] ∧ F , (10.36)

where F was assumed to be harmonic. This same form can be found from our D-term

Ddσ1 ∧ · · · ∧ = PΣ[e2A−ΦJ ] ∧ F , (10.37)

by simply noting that, expanding F in a base of harmonic forms, in (10.37) only the non-

primitive component (proportional to PΣ[e2A−ΦJ ]) of F survives and its contribution to

our D-term is essentially given by (10.36).

11. Concluding remarks

In this paper we have approached the problem of giving a unified description of the dynam-

ics of a general D-brane on a general N = 1 background. In particular we have identified

the F- and D-terms of the corresponding supersymmetric four-dimensional description. By

introducing an appropriate metric on the configuration space, we have also shown how the

resulting four-dimensional potential around a supersymmetric configuration can be writ-

ten in the standard form dictated by N = 1 supersymmetry. Furthermore we have seen

how the corresponding F-flatness conditions can be derived from a superpotential that can

be expressed in a universal way by using the integrable pure-spinor [5] of the underlying

space, while the D-flatness condition can be seen as the vanishing of a moment map whose

definition involves the non-integrable pure spinors.

It was possible to take the analysis on very general grounds thanks to the generalized

calibrations introduced in [8]. They have not only simplified many technical steps but they

have also provided an elegant geometrical interpretation of the resulting supersymmetric

structure, due to their relation to the possible solitonic objects of the four-dimensional

theory obtained through their D-brane realization. For example, in section 5 we have seen

how the form of the superpotential W presented in (4.9) can be immediately guessed by

using the generalized calibration ω(DW) in (2.15) for domain wall D-branes and the well

known relation between the superpotentials and BPS domain walls. The argument is com-

pletely analogous to the one used in [24, 25] to find effective closed string superpotentials,

and also provides a non-trivial consistency check of our results.

Regarding the D-terms, we have discussed in section 6 how they can be related to

cosmic strings, which constitute the other possible BPS solitonic objects allowed by the

effective N = 1 four-dimensional theory. In particular, using the generalized calibration

ω(string) written in (2.15), we have exactly reproduced from a purely D-brane setting the

cosmic string tension obtained from effective four-dimensional arguments in [27]. This gives

a strong explicit check not only of the correspondence proposed in [27] between supergravity

cosmic strings and cosmic strings obtained by wrapping D-branes on internal cycles, but
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also of the interpretation of the supergravity theory the authors of [27] started from as a

good effective four-dimensional theory describing a brane-antibrane system coupled to the

closed string sector (see also the discussion in [51]).

If on one side the supersymmetric solitons constructed from D-branes provide a physical

interpretation of the effective N = 1 structure presented in this theory, on the other

side a proper understanding of the underlying mathematical structure seems to require

some more effort. We have proposed some first results in this direction, by presenting

an almost complex structure and a symplectic structure on the configuration space that

are naturally associated to the superpotentials and the D-terms of the four-dimensional

description. However, we have worked at the formal level and a deeper mathematical

control of these structures would be desirable. First of all, the above structures are not

trivially integrable. This is somehow expected, since the same happens even in the simpler

case of branes on Calabi-Yau spaces [22]. However, in that case, restricting to the moduli

space of supersymmetric branes the integrability of the complex and symplectic structure

is recovered, moreover obtaining a resulting Kähler structure. This is compatible with the

N = 1 supersymmetry and in our more general case we then expect something similar

when we really restrict to the moduli space of the supersymmetric configurations. This

would require a better understanding of the moduli space of the generalized calibrated

submanifolds of [8]. In any case, as [8] and this paper show, generalized complex geometry

seems to be the right language to properly address these problems in a unified way.

The generality of the whole discussion automatically implies also the complete symme-

try of the results if we pass from Type IIA to Type IIB (and vice-versa) and contemporary

exchange the two pure spinors Ψ±. This can be seen as a formal generalized mirror sym-

metry relating N = 1 flux backgrounds [5], and it would be very interesting to try to

give some more substantial arguments in favor of it (for discussions on generalized mirror

symmetry see e.g. [26, 43, 57, 66 – 69]). For example, it would be interesting to address the

problem starting from a SYZ approach [70], where D-branes play a central role and then

our analysis could be helpful.

Finally, even if we have mainly focused on the purely theoretical aspects, we hope that

the results could be useful also in concrete constructions of always more realistic models

in string theory that have flux compactifications and D-branes as the essential ingredients

(like for example in the KKLT proposal [71]). The explicit study of D7-branes on SU(3)-

structure backgrounds presented in section 10 provides an example of how our analysis

allows to reproduce and generalize some previous results in that direction.
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A. Deformations of D-branes on non-trivial B field

In order to better understand the possible infinitesimal deformations of the the generalized

cycle (Σ,F), let us briefly review the definition of twisted world-volume gauge field in the

presence on a non-trivial B field [72, 73] on the internal manifold M .

A non-trivial B field can be seen as a connection of a gerbe on M [74]. Consider an

open covering {Uα} of M. Then a gerbe is defined by a C̆ech cocycle {gαβγ} of maps gαβγ :

Uα ∩Uβ ∩Uγ → U(1) (the cocycle condition is given by the condition gβγδg
−1
αγδgαβδg

−1
αβγ = 1

on any Uα ∩Uβ ∩Uγ ∩Uδ 6= ∅). The inequivalent gerbes are then defined by elements of the

second C̆ech cohomology group Ȟ(M,C∞(U(1))) ' H3(M, Z). In string theory the B field

defines a connection on a gerbe. Namely, we can take an open covering {Uα} such that the

B field is locally given by a two form Bα on any Uα. Then, on any twofold intersection

Uα ∩ Uβ there are one-forms Λαβ such that

Bα − Bβ = 2πα′dΛαβ on Uα ∩ Uβ ,

Λαβ + Λβγ + Λγα = −ig−1
αβγdgαβγ on Uα ∩ Uβ ∩ Uγ . (A.1)

The globally defined three-form H = dB is normalized in such a way that [H/(2π)2α′] ∈
H3(M, R) is the image of an integral class in H3(M, Z) and represents in real cohomology

the characteristic class of the gerbe.

In presence of such a gerbe with connection, for a D-branes wrapping a submanifold

Σ, we can take an open covering Ũα = Σ ∩ Uα on Σ. Then, a “U(1) connection” on the

D-brane is given by a set of one-forms Aα defined on Ũα and a set of transition functions

hαβ : Ũα ∩ Ũβ → U(1) such that

Aα − Aβ + ih−1
αβdhαβ = PΣ[Λαβ ] on Ũα ∩ Ũβ ,

hαβhβγhγα = PΣ[gαβγ ] on Ũα ∩ Ũβ ∩ Ũγ . (A.2)

The world-volume globally defined field strength is given by F = 2πα′dAα + PΣ[Bα], and

obeys the modified Bianchi identity dF = PΣ[H].

Now, consider any other U(1) connection A′
α with transition functions h′

αβ , on the same

cycle Σ. Then the set of one-forms aα/2πα′ = A′
α − Aα define a proper connection on the

line bundle on Σ defined by the transitions functions gαβ = h′
αβh−1

αβ (such that gαβgβγgγα =

1). If we consider an infinitesimal deformation of the (twisted) U(1) connection A, it is

described by a globally defined 1-form a on Σ, which can be seen as a connection on the

trivial line bundle on Σ. The corresponding infinitesimal deformation of the world-volume

field strength is given by δF = da.

Till now we have kept fixed the cycle Σ wrapped by the brane. However, we can

consider also a deformation of it, generated by a vector field X ∈ Γ(TN ), where N ⊂ M is

an open neighborhood of Σ. Obviously, under such a deformation, the background gerbe

transition functions gαβγ are deformed to new g′αβγ ' gαβγ +LXgαβγ , together with a new
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gerbe connection defined by B′
α ' Bα+LXBα and Λ′

αβ ' Λαβ+LXΛαβ . It is clear that also

the transition functions hαβ which enter the definition of world-volume gauge connection

in (A.2) must transform accordingly. Using (A.1) it is not difficult to see that h′
αβ ' hαβ(1+

iPΣ[ıXΛαβ ]). Thus, also the gauge field A must be deformed to A′
α = Aα−PΣ[ıXBα]/2πα′.

Note that the new gerbe defined by the transition functions {g′αβγ} is related to the gerbe

defined by {gαβγ} through the “gauge transformation” g′αβγ = gαβγ(fαβfβγfγα), where

fαβ ' 1 + iıXΛαβ . We can then perform a further gauge transformation B′
α → B̃α =

B′
α − d(ıXBα) ' Bα + ıXH, obtaining a new connection defined by the new B̃α’s for the

undeformed gerbe defined by the transition functions gαβγ and with the same transition one-

forms Λαβ. Note also that the gauge transformation of the B field δBα = dıXBα turns the

world-volume gauge connection back to the initial Aα with undeformed transition functions

hαβ . Then, supplemented by the gauge transformation, in this form the diffeomorfism

generated by X acts only on the B field (and consequently on H) accordingly to the

rule δXB = ıXH, leaving all the transition functions and the world-volume gauge field

untouched. The resulting infinitesimal deformation of the world-volume field strength is

given by δF = PΣ[ıXH].
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[20] D. Lüst, P. Mayr, S. Reffert and S. Stieberger, F-theory flux, destabilization of orientifolds

and soft terms on D7-branes, Nucl. Phys. B 732 (2006) 243 [hep-th/0501139].

[21] H. Jockers and J. Louis, D-terms and F-terms from D7-brane fluxes, Nucl. Phys. B 718

(2005) 203 [hep-th/0502059].

[22] R.P. Thomas, Moment maps, monodromy and mirror manifolds, math.DG/0104196.

[23] K. Hori et al., Mirror symmetry, AMS, Clay Mathematics Monographs, 2003.

[24] S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four-folds, Nucl. Phys. B 584

(2000) 69 [hep-th/9906070], erratum ibid. B 608 (2001) 477.

[25] S. Gukov, Solitons, superpotentials and calibrations, Nucl. Phys. B 574 (2000) 169

[hep-th/9911011].

[26] P. Grange and R. Minasian, Modified pure spinors and mirror symmetry, Nucl. Phys. B 732

(2006) 366 [hep-th/0412086].

[27] G. Dvali, R. Kallosh and A. Van Proeyen, D-term strings, JHEP 01 (2004) 035

[hep-th/0312005].

[28] M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Supersymmetric backgrounds from

generalized Calabi-Yau manifolds, JHEP 08 (2004) 046 [hep-th/0406137].

[29] P.G. Camara, L.E. Ibáñez and A.M. Uranga, Flux-induced SUSY-breaking soft terms, Nucl.

Phys. B 689 (2004) 195 [hep-th/0311241].
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